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Why not MapReduce 

• Provide fault-tolerance, but: 

 

• Hard to reuse intermediate results across 
multiple computations 

– stable storage for sharing data across jobs 

 

• Hard to support interactive ad-hoc queries 
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Why not Other In-Memory Storage 

• Examples: Piccolo 

– Apply fine-grained updates to shared states  

 

• Efficient, but: 

• Hard to provide fault-tolerance 

– need replication or checkpointing 
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Resilient Distributed Datasets (RDDs) 

• Restricted form of distributed shared memory 

– read-only, partitioned collection of records 

– can only be built through coarse‐grained 
deterministic transformations 

• data in stable storage 

• transformations from other RDDs. 

• Express computation by 

– defining RDDs 
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Fault Recovery 

• Efficient fault recovery using lineage 

– log one operation to apply to many elements 
(lineage) 

– recompute lost partitions on failure 
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Example 

lines = spark.textFile("hdfs://...") 
errors = lines.filter(_.startsWith("ERROR")) 
hdfs_errors = errors.filter(_.contains(“HDFS")) 
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Advantages of the RDD Model 

• Efficient fault recovery 

– fine-grained and low-overhead using lineage 

 

• Immutable nature can mitigate stragglers 

– backup tasks to mitigate stragglers 

 

• Graceful degradation when RAM is not 
enough 
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Spark 

• Implementation of the RDD abstraction 

– Scala interface 

• Two components 

– Driver 

– Workers 
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• Driver 

– defines and invokes actions on RDDs 

– tracks the RDDs’ lineage 

• Workers 

– store RDD partitions 

– perform RDD  
transformations 

Spark Runtime 
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Supported RDD Operations 

• Transformations 
– map (f: T->U) 

– filter (f: T->Bool) 

– join() 

– ... (and lots of others) 

• Actions 
– count() 

– save() 

– ... (and lots of others) 
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Representing RDDs 

• A graph-based representation for RDDs 

 

• Pieces of information for each RDD 

– a set of partitions 

– a set of dependencies on parent RDDs 

– a function for computing it from its parents 

– metadata about its partitioning scheme and data 
placement 
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RDD Dependencies 

• Narrow dependencies 

– each partition of the parent RDD is used by at 
most one partition of the child RDD 

 

• Wide dependencies 

– multiple child partitions may depend on it 
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RDD Dependencies 
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RDD Dependencies 

• Narrow dependencies 

– allow for pipelined execution on one cluster node 

– easy fault recovery 

• Wide dependencies 

– require data from all parent partitions to be 
available and to be shuffled across the nodes 

– a single failed node might cause a complete re-
execution. 
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Job Scheduling 

• To execute an action on an RDD 

– scheduler decide the stages from the RDD’s 
lineage graph 

– each stage contains as many pipelined 
transformations with narrow dependencies as 
possible 
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Job Scheduling 
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Memory Management 

• Three options for persistent RDDs 

– in-memory storage as deserialized Java objects 

– in-memory storage as serialized data 

– on-disk storage 

• LRU eviction policy at the level of RDDs 

– when there’s not enough memory, evict a 
partition from the least recently accessed RDD 
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Checkpointing 

• Checkpoint RDDs to prevent long lineage 
chains during fault recovery 

 

• Simpler to checkpoint than shared memory 

– Read-only nature of RDDs 
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Discussions 

19 



Checkpointing or Versioning? 
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• Frequent checkpointing, or 

 Keep all versions of ranks? 


