
Resilient Distributed Datasets

Presented by Henggang Cui

15799b Talk

1

Why not MapReduce

• Provide fault-tolerance, but:

• Hard to reuse intermediate results across
multiple computations

– stable storage for sharing data across jobs

• Hard to support interactive ad-hoc queries

2

Why not Other In-Memory Storage

• Examples: Piccolo

– Apply fine-grained updates to shared states

• Efficient, but:

• Hard to provide fault-tolerance

– need replication or checkpointing

3

Resilient Distributed Datasets (RDDs)

• Restricted form of distributed shared memory

– read-only, partitioned collection of records

– can only be built through coarse‐grained
deterministic transformations

• data in stable storage

• transformations from other RDDs.

• Express computation by

– defining RDDs

4

Fault Recovery

• Efficient fault recovery using lineage

– log one operation to apply to many elements
(lineage)

– recompute lost partitions on failure

5

Example

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
hdfs_errors = errors.filter(_.contains(“HDFS"))

6

Advantages of the RDD Model

• Efficient fault recovery

– fine-grained and low-overhead using lineage

• Immutable nature can mitigate stragglers

– backup tasks to mitigate stragglers

• Graceful degradation when RAM is not
enough

7

Spark

• Implementation of the RDD abstraction

– Scala interface

• Two components

– Driver

– Workers

8

• Driver

– defines and invokes actions on RDDs

– tracks the RDDs’ lineage

• Workers

– store RDD partitions

– perform RDD
transformations

Spark Runtime

9

Supported RDD Operations

• Transformations
– map (f: T->U)

– filter (f: T->Bool)

– join()

– ... (and lots of others)

• Actions
– count()

– save()

– ... (and lots of others)

10

Representing RDDs

• A graph-based representation for RDDs

• Pieces of information for each RDD

– a set of partitions

– a set of dependencies on parent RDDs

– a function for computing it from its parents

– metadata about its partitioning scheme and data
placement

11

RDD Dependencies

• Narrow dependencies

– each partition of the parent RDD is used by at
most one partition of the child RDD

• Wide dependencies

– multiple child partitions may depend on it

12

RDD Dependencies

13

RDD Dependencies

• Narrow dependencies

– allow for pipelined execution on one cluster node

– easy fault recovery

• Wide dependencies

– require data from all parent partitions to be
available and to be shuffled across the nodes

– a single failed node might cause a complete re-
execution.

14

Job Scheduling

• To execute an action on an RDD

– scheduler decide the stages from the RDD’s
lineage graph

– each stage contains as many pipelined
transformations with narrow dependencies as
possible

15

Job Scheduling

16

Memory Management

• Three options for persistent RDDs

– in-memory storage as deserialized Java objects

– in-memory storage as serialized data

– on-disk storage

• LRU eviction policy at the level of RDDs

– when there’s not enough memory, evict a
partition from the least recently accessed RDD

17

Checkpointing

• Checkpoint RDDs to prevent long lineage
chains during fault recovery

• Simpler to checkpoint than shared memory

– Read-only nature of RDDs

18

Discussions

19

Checkpointing or Versioning?

20

• Frequent checkpointing, or

 Keep all versions of ranks?

