
Pregel: A System for Large-Scale Graph
Processing

Presenter: Jinliang Wei

CMU CSD

November 13, 2013



Why Pregel?

Need to process large-scale graphs.

I Option 1: Implement distributed infrastructure per algorithm?
Too much repeated effort

I Option 2: Exsiting distribtued computing platform:
MapReduce? Parallel databases?
Not suitable for graph processing

I Option 3: Single-computer graph algorithm library?
Limited scale

I Option 4: Existing parallel graph systems?
Fault tolerance and other issues



Main Features

I Vertex program

I Message passing

I Synchronous parallel



Example: PageRank



Example: PageRank as a vertex program

Iteratively run the following steps:

I Read messages from adjacent vertices (their ranks)

I Update my rank

I Send my rank to adjacent vertices



Vertex program in Pregel



PageRank in Pregel



Message passing

I Message passing vs. Distributed Shared Memory (DSM)

I Communication between vertex programs is done via explicit
message sending and receiving.

I Simple to implement

I No shared resource - no need for consistency model or
concurrency control

I Disadvantages?



Bulk Synchronous Parallel

I A superstep: local computation + communicaiton +
sychronization barrier

I All vertex programs must reach the barrier before starting the
next superstep.

I Messages sent won’t be seen by other until the next iteration.



Combiners

I Messages may be combined to reduce communication
overhead.

I User-defined function to combine messages.



Aggregators

I Enables restricted global communication.

I Each vertex supplies a value. All values are combined by a
reduction operator. The aggregated value is avaiable for all
vertices to read at the next iteration.

I Inherited by Distributed GraphLab.



Topology Mutation

I Add or remove vertices and edges.

I How to handle conflicts, e.g. two requests to add one vertex
with different values?

I Partial ordering
I Additions follow removals.
I Edge removals before vertex removals.

I User-defined handler



Implementation

I The graph is partitioned and distributed among worker
machines.

I Default is hash partioning. Allows custom assignment
function.

I The master instructs workers to perform a superstep.

I Workers run Compute() on each vertex



Fault Tolerance

I Check pointing.

I Confined check pointing - under development.
Only recover lost partition.



Evaluation



Look back from 2013

I The first widely-known distributed graph processing system.

I Influntial to many graph processing systems: Giraph,
GraphLab, GraphChi...



Problems with message passing

I A vertex program must keep running to send out messages.
Otherwise, its adjacent vertices won’t know that vertex’s
value.

I In real applications, some vertices may converge earlier than
others.

I Wasted CPU resource.

I What about DSM?



Other problems with Pregel

I BSP: well-known straggler problem

I Load balancing - power-law graph


