Pregel: A System for Large-Scale Graph
Processing

Presenter: Jinliang Wei
CMU CSD

November 13, 2013



Why Pregel?

Need to process large-scale graphs.

» Option 1: Implement distributed infrastructure per algorithm?
Too much repeated effort

» Option 2: Exsiting distribtued computing platform:
MapReduce? Parallel databases?
Not suitable for graph processing

» Option 3: Single-computer graph algorithm library?
Limited scale

» Option 4: Existing parallel graph systems?
Fault tolerance and other issues



Main Features

> Vertex program
» Message passing

» Synchronous parallel



Example: PageRank

Q>



Example: PageRank as a vertex program

Iteratively run the following steps:

» Read messages from adjacent vertices (their ranks)
> Update my rank

» Send my rank to adjacent vertices



Vertex program in Pregel

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>
class Vertex {
public:
virtual wvoid ComputE(HessageIteIator* msgs) = 0;

const stringk vertex_id() comnst;
int64 superstep() const;

const VertexValuek GetValue();
VertexValue* MutableValue();
DutEdgelterator GetOutEdgeIterator();

void SendMessageTo(const stringhk dest_vertex,
const MessageValuek message);
void VoteToHalt();
1



PageRank in Pregel

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgelIterator().size();
SendMessageToAllNeighbors (GetValue() / n);

} else {
VoteToHalt () ;

+

}
};



Message passing

» Message passing vs. Distributed Shared Memory (DSM)

» Communication between vertex programs is done via explicit
message sending and receiving.

» Simple to implement

> No shared resource - no need for consistency model or
concurrency control

» Disadvantages?



Bulk Synchronous Parallel

» A superstep: local computation + communicaiton +
sychronization barrier

> All vertex programs must reach the barrier before starting the
next superstep.

» Messages sent won't be seen by other until the next iteration.



Combiners

» Messages may be combined to reduce communication
overhead.

» User-defined function to combine messages.



Aggregators

» Enables restricted global communication.

» Each vertex supplies a value. All values are combined by a
reduction operator. The aggregated value is avaiable for all
vertices to read at the next iteration.

» Inherited by Distributed GraphLab.



Topology Mutation

v

Add or remove vertices and edges.

v

How to handle conflicts, e.g. two requests to add one vertex
with different values?

v

Partial ordering

» Additions follow removals.
» Edge removals before vertex removals.

User-defined handler

v



Implementation

» The graph is partitioned and distributed among worker
machines.

» Default is hash partioning. Allows custom assignment
function.

» The master instructs workers to perform a superstep.

» Workers run Compute() on each vertex



Fault Tolerance

» Check pointing.

» Confined check pointing - under development.
Only recover lost partition.



Evaluation

Runtime (seconds)

5G

10G 15G 20G 25G 30G 353G 140G

Number of vertices

156 506

b+
g
<
E]
-4

100 260 360 400 500 600 700 S60

Number of worker tasks




Look back from 2013

» The first widely-known distributed graph processing system.

> Influntial to many graph processing systems: Giraph,
GraphLab, GraphChi...



Problems with message passing

v

A vertex program must keep running to send out messages.
Otherwise, its adjacent vertices won't know that vertex's
value.

In real applications, some vertices may converge earlier than
others.

Wasted CPU resource.

What about DSM?



Other problems with Pregel

» BSP: well-known straggler problem

» Load balancing - power-law graph



