
Google Megastore: The Data
Engine Behind GAE

presentation by Atreyee Maiti

http://perspectives.mvdirona.com/2011/01/09/GoogleMegastoreTheDataEngineBehindGAE.aspx
http://perspectives.mvdirona.com/2011/01/09/GoogleMegastoreTheDataEngineBehindGAE.aspx
http://perspectives.mvdirona.com/2011/01/09/GoogleMegastoreTheDataEngineBehindGAE.aspx
http://perspectives.mvdirona.com/2011/01/09/GoogleMegastoreTheDataEngineBehindGAE.aspx

What is it?

● Best of both worlds - NoSQL and relational
● Fully serializable ACID in fine grained data partitions
● Designed for interactive online services which pose

challenging requirements

Handles more than three billion write and 20 billion read
transactions daily and stores nearly a petabyte of primary
data across many global datacenters. Being used for
google app engine since 2009 and hundreds of google
applications

● Replication
● Partitioning
● Entity Groups
● Data model
● Transactions

Brief overview of main concepts

Replication

Needed across wide geographic area
Possible Strategies:
● async master/slave
● sync master
● optimistic replication

● Inherently fault tolerant
● Write ahead log replicated over peers
● Acknowledges when majority of replicas have changes

others catch up when able to

Paxos to the rescue!

Partitioning and locality

source: J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services

source: J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services

Entity group boundaries

email blogs - profiles

● Storing data - uses big table
● For low latency, cache efficiency, and throughput, the

data for an entity group are held in contiguous ranges of
Bigtable rows.

● Schema language lets applications control the
placement of hierarchical data, storing data that is
accessed together in nearby rows or denormalized into
the same row.

API design philosophy

● Aim is to serve interactive apps - cannot afford
expensive joins

● Move complexity to writes because reads are higher
● Joins not needed because of the hierarchical

organization in big table

Data model

source: J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services

Indexes

● Could be on any property
● Local - to search within entity group
● Global - to find across entity groups - without knowing

which group they belong to - find all photos tagged by
big data

● Storing clause - add additional properties on the entity
for faster retrieval

● Repeated indexes - for repeated properties
● Inline indexes - for extracting info from child entities and

storing in parent for fast access - can be used to
implement many to many links

Mapping to Bigtable

Megastore table name + property name = Bigtable column
name
metadata maintained in same row of Bigtable - atomicity

source: J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services

Transactions and concurrency
control

● Each entity group like a mini db with serializable ACID
semantics. A transaction writes its mutations into the
entity group's write-ahead log, then the mutations are
applied to the data

● Implements multiversion concurrency control (MVCC)
● Provides current, snapshot and inconsistent reads

Transaction lifecycle

Read

Read from
bigtable and
gather writes
into log entry

Commit

Apply

Cleanup

return to the client, but
make best-effort attempt
to wait for the nearest
replica to apply.

Queues
A way to batch multiple updates into a single transaction, or to defer
work

For example, calendar application

Replication in detail
● Reads and writes can be initiated from any replica, and ACID

semantics are preserved.
● Replication is done per entity group by synchronously replicating

the group's transaction log to a quorum of replicas

Megastore’s usage of paxos

source: J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services

Algorithms

Query
local

Determine
highest
possibly

committed
log position

Select replica
that has
applied

through that
position

If local
replica

then read

If not, read
from majority

replicas to find
maximum and
pick a replica

ValidateQuery data Catchup

Comparison
Name of System Difference

Bigtable, Cassandra,
and PNUTS

traditional RDBMS systems properties not sacrificed
synchronous replication schemes with consistency
These systems often reduce the scope of
transactions to the granularity of single key access
and place hurdle to building applications - lack rich
data model

Bigtable replication replicates at the level of entire entity group
transactions, not individual Bigtable column values.

● Fault tolerance is fault masking
● Chain gang throttling
● Achieving good performance for more complex queries requires

attention to the physical data layout in Bigtable
● Megastore does not enforce specific policies on block sizes,

compression, table splitting, locality group, nor other tuning controls
provided by Bigtable.

Limitations

Conclusion
● As Brewer’s CAP theorem showed, a distributed system can’t

provide consistency, availability and partition tolerance to all nodes
at the same time. But this paper shows that by making smart
choices we can get darn close as far as human users are
concerned.

● Megastore is perhaps the 1st large-scale storage system to
implement Paxos-based replication across datacenters while
satisfying the scalability and performance requirements of scalable
web applications in the cloud.

References / Acknowledgements

http://googleappengine.blogspot.com/2009/09/migration-to-
better-datastore.html
http://googleappengine.blogspot.com/2010/06/datastore-
performance-growing-pains.html
http://storagemojo.com/2011/04/20/googles-megastore/
http://www.informationweek.com/internet/google/google-
spills-megastores-secrets/229205494

http://googleappengine.blogspot.com/2009/09/migration-to-better-datastore.html
http://googleappengine.blogspot.com/2009/09/migration-to-better-datastore.html
http://googleappengine.blogspot.com/2009/09/migration-to-better-datastore.html
http://googleappengine.blogspot.com/2010/06/datastore-performance-growing-pains.html
http://googleappengine.blogspot.com/2010/06/datastore-performance-growing-pains.html
http://googleappengine.blogspot.com/2010/06/datastore-performance-growing-pains.html
http://storagemojo.com/2011/04/20/googles-megastore/
http://storagemojo.com/2011/04/20/googles-megastore/
http://www.informationweek.com/internet/google/google-spills-megastores-secrets/229205494
http://www.informationweek.com/internet/google/google-spills-megastores-secrets/229205494
http://www.informationweek.com/internet/google/google-spills-megastores-secrets/229205494

Resources

http://static.googleusercontent.
com/external_content/untrusted_dlcp/www.google.
com/en/us/events/io/2011/static/presofiles/more_9s_under_
the_covers_of_the_high_replication_datastore.pdf
http://www.youtube.com/watch?v=tx5gdoNpcZM

http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/events/io/2011/static/presofiles/more_9s_under_the_covers_of_the_high_replication_datastore.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/events/io/2011/static/presofiles/more_9s_under_the_covers_of_the_high_replication_datastore.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/events/io/2011/static/presofiles/more_9s_under_the_covers_of_the_high_replication_datastore.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/events/io/2011/static/presofiles/more_9s_under_the_covers_of_the_high_replication_datastore.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/events/io/2011/static/presofiles/more_9s_under_the_covers_of_the_high_replication_datastore.pdf
http://www.youtube.com/watch?v=tx5gdoNpcZM
http://www.youtube.com/watch?v=tx5gdoNpcZM

