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Motivation
● MapReduce: A major step backwards?

○ basic control flow of this framework has existed in parallel DBMS for over 20 
years 

○ parallel DBMS provide a high-level programming environment and parallelize 
readily 

○ possible to write almost any parallel processing task as either a set of database 
queries or a set of MapReduce jobs 

● An attempt to evaluate in terms of performance and development 
complexity

● Provide a systematic analysis of the design choices made in these 
two paradigms and the repercussions of those





Approach to analysis
● Benchmark consisting of a collection of tasks run 
● Measure each system’s performance for various degrees of 

parallelism on a cluster of 100 nodes 
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Parallel Databases
● Tables are partitioned over the nodes in a cluster 
● System uses an optimizer that translates SQL commands into a query plan whose 

execution is divided amongst multiple nodes 
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Architectural elements
Parallel databases Map reduce frameworks

Schema Support Data needs to conform to the 
relational paradigm

Schema-free. need for a custom 
parser in order to derive the 
appropriate semantics for their 
input records. requires discipline.
when no sharing is anticipated, 
the MR paradigm is quite flexible.

Indexing hash or Btree indexing reduces 
the scope of the search 
dramatically. Most database 
systems also support multiple 
indexes per table.  

do not provide built-in indexes.  



Parallel databases Map reduce frameworks

Programming Model State what you want one is forced to write algorithms in 
a low-level language in order to 
perform record-level manipulation. 

there is widespread sharing of MR 
code fragments to do common 
tasks, such as joining data sets. To 
alleviate the burden of having to re- 
implement repetitive tasks, the MR 
community is migrating high- level 
languages on top of the current 
interface to move such functionality 
into the run time. 

Data distribution send the computation to the data data passed onto the next stages of 
the computation



Parallel databases Map reduce frameworks

Execution Strategy push mechanism to transfer data 
(no materialization of the split 
files)

pull mechanism to draw in input 
files - induces large disk seeks

Flexibility programming environments like 
RoR allow developers to benefit 
from the robustness of DBMS 
technologies without the burden 
of writing complex SQL 

 SQL does not facilitate the 
desired generality that MR 
provides. 



Parallel databases Map reduce frameworks

Fault tolerance larger granules of work (i.e., 
transactions) that are restarted 
in the event of a failure. 

if a unit of work fails, then the 
MR scheduler can 
automatically restart the task 
on an alternate node. 



Experiments carried out
● Original MR task - grep task - representative of MR use cases

○ Loading
○ Execution

● Analytical tasks - HTML documents processing similar to web 
crawler
○ Loading
○ Selection
○ Aggregation
○ Join
○ UDF Aggregation

● Both DBMS-X and Vertica execute most of the tasks much faster 
than Hadoop at all scaling levels. 



Findings
Loading time



Task execution time



Analytical tasks
Documents, UserVisits and Rankings tables



Aggregation task



Join and UDF



Analysis of the results
System level aspects
● System Installation, 

Configuration, and 
Tuning 

● Task Start-up 
● Compression 
● Loading and Data 

Layout 
● Execution Strategies 
● Failure Model 

User level aspects
● Ease of use
● Additional tools 



● DBMS-X was 3.2 times faster than MR and Vertica was 2.3 times faster than DBMS-X.  
● Parallel DBMS-X lesser energy needs. 
● B-tree indices,  novel storage mechanisms, aggressive compression techniques and 

sophisticated parallel algorithms for querying large amounts of relational data. 
● Hadoop has upfront cost advantage - hence attracted such a large user community. 
● Extensibility is USP of MR
● Fault tolerance of MR
● It comes with a potentially large performance penalty, due to the cost of materializing the 

intermediate files between the map and reduce phases. 
● SQL is particularly bad
● MR makes a commitment to a “schema later” or even “schema never” paradigm. But this 

lack of a schema has a number of important consequences. This difference makes 
compression less valuable in MR and causes a portion of the performance difference 
between the two classes of systems. 



Where are we now?

Better interfaces for MR

Embracing both

Databases with 
mapreduce 
support

SCOPE from Microsoft



Summary
● Different paradigms with areas where each of these shine
● Need for more maturity and tools for MR. Work in progress
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