
A comparison of approaches
to large scale data analysis

A. Pavlo, et al., SIGMOD, 2009

Presentation by Atreyee Maiti

Motivation
● MapReduce: A major step backwards?

○ basic control flow of this framework has existed in parallel DBMS for over 20
years

○ parallel DBMS provide a high-level programming environment and parallelize
readily

○ possible to write almost any parallel processing task as either a set of database
queries or a set of MapReduce jobs

● An attempt to evaluate in terms of performance and development
complexity

● Provide a systematic analysis of the design choices made in these
two paradigms and the repercussions of those

Approach to analysis
● Benchmark consisting of a collection of tasks run
● Measure each system’s performance for various degrees of

parallelism on a cluster of 100 nodes

He who
must not
be named
;)

VS

Map Reduce

Parallel Databases
● Tables are partitioned over the nodes in a cluster
● System uses an optimizer that translates SQL commands into a query plan whose

execution is divided amongst multiple nodes

Table 1

Table 2

Filter over some
predicate in parallel

Aggregate over joinJoin in
parallel

Filtered
Table 1

Table 1
Table 1

Table 1
Table 1

Table 2
Table 2

Filtered
Table 1Filtered

Table 1Filtered
Table 1

Table 2
replicated

Architectural elements
Parallel databases Map reduce frameworks

Schema Support Data needs to conform to the
relational paradigm

Schema-free. need for a custom
parser in order to derive the
appropriate semantics for their
input records. requires discipline.
when no sharing is anticipated,
the MR paradigm is quite flexible.

Indexing hash or Btree indexing reduces
the scope of the search
dramatically. Most database
systems also support multiple
indexes per table.

do not provide built-in indexes.

Parallel databases Map reduce frameworks

Programming Model State what you want one is forced to write algorithms in
a low-level language in order to
perform record-level manipulation.

there is widespread sharing of MR
code fragments to do common
tasks, such as joining data sets. To
alleviate the burden of having to re-
implement repetitive tasks, the MR
community is migrating high- level
languages on top of the current
interface to move such functionality
into the run time.

Data distribution send the computation to the data data passed onto the next stages of
the computation

Parallel databases Map reduce frameworks

Execution Strategy push mechanism to transfer data
(no materialization of the split
files)

pull mechanism to draw in input
files - induces large disk seeks

Flexibility programming environments like
RoR allow developers to benefit
from the robustness of DBMS
technologies without the burden
of writing complex SQL

 SQL does not facilitate the
desired generality that MR
provides.

Parallel databases Map reduce frameworks

Fault tolerance larger granules of work (i.e.,
transactions) that are restarted
in the event of a failure.

if a unit of work fails, then the
MR scheduler can
automatically restart the task
on an alternate node.

Experiments carried out
● Original MR task - grep task - representative of MR use cases

○ Loading
○ Execution

● Analytical tasks - HTML documents processing similar to web
crawler
○ Loading
○ Selection
○ Aggregation
○ Join
○ UDF Aggregation

● Both DBMS-X and Vertica execute most of the tasks much faster
than Hadoop at all scaling levels.

Findings
Loading time

Task execution time

Analytical tasks
Documents, UserVisits and Rankings tables

Aggregation task

Join and UDF

Analysis of the results
System level aspects
● System Installation,

Configuration, and
Tuning

● Task Start-up
● Compression
● Loading and Data

Layout
● Execution Strategies
● Failure Model

User level aspects
● Ease of use
● Additional tools

● DBMS-X was 3.2 times faster than MR and Vertica was 2.3 times faster than DBMS-X.
● Parallel DBMS-X lesser energy needs.
● B-tree indices, novel storage mechanisms, aggressive compression techniques and

sophisticated parallel algorithms for querying large amounts of relational data.
● Hadoop has upfront cost advantage - hence attracted such a large user community.
● Extensibility is USP of MR
● Fault tolerance of MR
● It comes with a potentially large performance penalty, due to the cost of materializing the

intermediate files between the map and reduce phases.
● SQL is particularly bad
● MR makes a commitment to a “schema later” or even “schema never” paradigm. But this

lack of a schema has a number of important consequences. This difference makes
compression less valuable in MR and causes a portion of the performance difference
between the two classes of systems.

Where are we now?

Better interfaces for MR

Embracing both

Databases with
mapreduce
support

SCOPE from Microsoft

Summary
● Different paradigms with areas where each of these shine
● Need for more maturity and tools for MR. Work in progress

References
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/benchmarks-sigmod09.pdf
http://vgc.poly.edu/~juliana/courses/cs9223/Lectures/paralleldb-vs-hadoop.pdf
http://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext
http://www.datanami.com/datanami/2013-02-05/weighing_mapreduce_against_parallel_dbms.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0032.html

http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/benchmarks-sigmod09.pdf
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/benchmarks-sigmod09.pdf
http://vgc.poly.edu/~juliana/courses/cs9223/Lectures/paralleldb-vs-hadoop.pdf
http://vgc.poly.edu/~juliana/courses/cs9223/Lectures/paralleldb-vs-hadoop.pdf
http://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext
http://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext
http://www.datanami.com/datanami/2013-02-05/weighing_mapreduce_against_parallel_dbms.html
http://www.datanami.com/datanami/2013-02-05/weighing_mapreduce_against_parallel_dbms.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0032.html
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0032.html

