
HyPer: A Hybrid OLTP&OLAP
Main Memory

Database System

Presenter: Lavanya Subramanian

Need for Online Analytics

• Business intelligence today demands fresh data

• Business analytics of yesterday

– Transactions are run on an OLTP database

– OLTP database state extracted periodically

– Analytics performed on the extracted state

• The “perform analytics offline” model too stale
and slow for today’s business intelligence

How To Perform Online Analytics?

• Run transactions (OLTP queries) and analytics
(OLAP queries) on the same machines

• Problem: Long running analytics queries
interfere with transactions

HyPer: Key Idea

• In-memory database runs transactions & analytics

• Transactions are run on the main database

• Snapshots are created for analytics

– by forking the OLTP process

• Properties of snapshots created on a fork()

– Data is not duplicated rightaway

– A page is duplicated only when modified (copy-on-write)

Basic Transaction Processing Model in HyPer

• Builds on prior work on in-memory transaction
processing

• Single-threaded execution is effective enough

– No IO wait times

• Short transactions

– No interactive transactions

Analytical Processing in HyPer

Image Credit: Alfons Kemper

How Does Copy on Write Work?

Memory

MC L3 L2 L1 CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

Image Credit: Vivek Seshadri

Hardware Support For Fast Copy-On-Write

Memory

MC L3 L2 L1 CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

Image Credit: Vivek Seshadri

Parallelizing
 Analytics and Transactions

Multiple OLAP Sessions

• Snapshots for OLAP

– Do not consume much space

– Can be created easily using fork()

• Parallelize OLAP query execution

– Using multiple snapshots

– Executing on idle CPU cores

• Snapshot deleted after last query of a session

Multi-Threaded Transaction Processing

• Execute multiple read-only queries in parallel

• Execute read-write queries in parallel

– Scenarios where data can be partitioned

– Transactions confined to partitions

• Only one transaction per partition

• Cross-partition transactions run single threaded

More Discussion on Transactions

• Snapshot Isolation

• Durability

• Transaction Consistency

Snapshot Isolation

• Roll-back

– Roll back when an older query needs older data

• Versioning

– Create a new object version on every update

– Retrieve youngest version before query start time

• Shadowing

– Write updates to a shadow copy

– Update main copy upon commit

• Virtual memory snapshots

Durability

• On failure recovery, all effects of committed
transactions should be restored

• Solution: Logical redo logging

– Apply log to database after failure recovery

• Redo log can be used to feed a secondary server

– Potential uses: standby, analytics processing

Transaction Consistency

• Perform Undo logging to obtain a transaction
consistent snapshot

• Applied to a snapshot created from a fork()

– To undo effects of current transactions

Methodology

• Benchmark

– TPC-C scheme

– Additional three relations from TPC-H

• Hardware

– Intel X5570 – Quad Core CPU

– 64 GB DRAM

• Comparison Points

– MonetDB (for analytics)

– VoltDB (for transactions)

Results - Performance and Memory Consumption

Memory Consumption

Discussion

• Simple mechanism that exploits an existing
feature of virtual memory management

• How would memory consumption increase with
multiple snapshots?

• Is their OLTP performance evaluation fair?

