HyPer: A Hybrid OLTP&OLAP
Main Memory
Database System

Presenter: Lavanya Subramanian

Need for Online Analytics

* Business intelligence today demands fresh data

* Business analytics of yesterday
— Transactions are run on an OLTP database
— OLTP database state extracted periodically
— Analytics performed on the extracted state

* The “perform analytics offline” model too stale
and slow for today’s business intelligence

How To Perform Online Analytics?

* Run transactions (OLTP queries) and analytics
(OLAP queries) on the same machines

* Problem: Long running analytics queries
interfere with transactions

HyPer: Key ldea

* |In-memory database runs transactions & analytics
* Transactions are run on the main database

* Snapshots are created for analytics
— by forking the OLTP process

* Properties of snapshots created on a fork()
— Data is not duplicated rightaway
— A page is duplicated only when modified (copy-on-write)

Basic Transaction Processing Model in HyPer

* Builds on prior work on in-memory transaction
processing

* Single-threaded execution is effective enough
— No 10 wait times

 Short transactions
— No interactive transactions

Analytical Processing in HyPer

Image Credit: Alfons Kemper

How Does Copy on Write Work?

1) High latency
3) Cache pollution \\

2) High bandwidth utilization

4) Unwanted data movement

Image Credit: Vivek Seshadri

Hardware Support For Fast Copy-On-Write

3) No cache pollution 1) Low latency

2) Low bandwidth utilization

Image Credit: Vivek Seshadri

Parallelizing
Analytics and Transactions

Multiple OLAP Sessions

* Snapshots for OLAP

— Do not consume much space

— Can be created easily using fork()

* Parallelize OLAP query execution
— Using multiple snapshots
— Executing on idle CPU cores

* Snapshot deleted after last query of a session

Multi-Threaded Transaction Processing

* Execute multiple read-only queries in parallel

* Execute read-write queries in parallel
— Scenarios where data can be partitioned
— Transactions confined to partitions

* Only one transaction per partition

* Cross-partition transactions run single threaded

More Discussion on Transactions

* Snapshot Isolation
* Durability
* Transaction Consistency

Snapshot Isolation

* Roll-back

— Roll back when an older query needs older data
* Versioning

— Create a new object version on every update

— Retrieve youngest version before query start time

* Shadowing
— Write updates to a shadow copy
— Update main copy upon commit

* Virtual memory snapshots

Durability

* On failure recovery, all effects of committed
transactions should be restored

e Solution: Logical redo logging

— Apply log to database after failure recovery

* Redo log can be used to feed a secondary server
— Potential uses: standby, analytics processing

Transaction Consistency

* Perform Undo logging to obtain a transaction
consistent snapshot

* Applied to a snapshot created from a fork()

— To undo effects of current transactions

Methodology

e Benchmark
— TPC-C scheme
— Additional three relations from TPC-H

 Hardware
— Intel X5570 — Quad Core CPU
— 64 GB DRAM

* Comparison Points

— MonetDB (for analytics)
— VoltDB (for transactions)

Results - Performance and Memory Consumption

HyPer configurations MonetDB VoltDB
one query session (stream) || 8 query sessions (streams) || 3 query sessions (streams) no OLTP no OLAP
single threaded OLTP single threaded OLTP 5 OLTP threads 1 query stream || only OLTP
OLTP Query resp. OLTP Query resp. OLTP Query resp. Query resp. results from
Query No. | throughput | times (ms) throughput | times (ms) throughput | times (ms) times (ms) [18]
Q1 67 71 71 63
Q2 163 233 212 210 ”
Q3 66 78 73 75 :
04 % 194 . 257 z 226 6003 2
Q5 = 1276 s 1768 - 1564 3930 o
Q6 = 9 2 19 2 17 123 g
Q7 ﬁ 1151 " 1611 Z 1466 1713 3
Q8 - 399 bt 680 " 593 172 =
Q9 = 206 = 269 = 249 208 =
Q10 I 1871 2 2490 2 2260 6209 S
Q11 £ 33 -} 38 -3 35 35 iy
Q12 = 156 - 195 ho 170 192 "é
Q13 E 185 “ 272 = 229 284 =
Q14 z 122 & 210 = 156 722 o
Q15 L 528 = 1002 : 792 533 2
Q16 3 1353 g 1584 o 1500 3562 £
Q17 c 159 > 171 © 168 342 w
Q18 ; 108 2 133 Z 119 2505 _5_‘
Q19 103 219 = 183 1608 S
Q20 114 230 197 750 i)
Q21 46 50 50 329
Q22 7 9 9 141

Fig. 9. Performance Comparison: HyPer OLTP&OLAP, MonetDB only OLAP, VoltDB only OLTP

Memory Consumption

A.OLTPonly + |
B. Hybrid (idle OLA B
C. Hybrid (idle OLAP, respawned) #

6000

5000

4000

3000

Memory Consumption [MB]

2000 §

1000

0 ! ! ! ! ! I ! I !
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Transactions

Discussion

* Simple mechanism that exploits an existing
feature of virtual memory management

* How would memory consumption increase with
multiple snapshots?

* |s their OLTP performance evaluation fair?

