
Efficient Transaction Processing
in SAP HANA Database

Presented by Henggang Cui
15-799b Talk

1

Motivation

• OLTP

– large number of concurrent users and transactions

– high update load

– very selective point queries

• OLAP

– aggregation queries over a huge volume of data

– compute statistical models from the data

2

Motivation

• Zoo of different systems with different
capabilities for different application scenarios

– OLTP: row-stores

– OLAP: column-stores

• However, workloads usually contain both

– transactional database needs statistical
information to make on-the-fly business decisions

– data-warehouses are required to capture
transactions feeds for real-time analytics

3

SAP HANA

• SAP HANA

– efficient processing for both OLTP and OLAP

– achieved through a sophisticated multi-step
record life cycle management approach

4

Outline

• Lifecycle management of records

• Merge details & optimization

• Summary & discussion

5

Lifecycle Management of Records

• Three stages of physical representation

– L1-delta

– L2-delta

– Main

• Records are propagated through different
stages in their lifetime

6

L1-delta Storage

• L1-delta

– accepts all incoming data requests

– stores records in row format (write-optimized)

• fast insert and delete

• fast field update

• fast record projection

– no data compression

– holds 10,000 to 100,000 rows per single-node

7

L2-delta Storage

• L2-delta

– the second stage of the record life cycle

– stores records in column format

– dictionary encoding for better memory usage

– unsorted dictionary

• requiring secondary index structures to optimally
support point query access patterns

– well suited to store up to 10 million rows

8

Main Storage

• Main

– final data format

– stores records in column format

– highest compression rate

• sorted dictionary

• positions in dictionary stored in a bit-packed manner

• the dictionary is also compressed

9

Lifecycle Management of Records

10

Unified Table Access

• A common abstract interface to access
different stores

• Records are propagated asynchronously

– without interfering with running operations

• Two transformations (or merge steps)

– L1-deta to L2-delta

– L2-delta to main

11

Merge from L1-delta to L2-delta

• Row format to column format conversion

– rows are split into corresponding columnar values

– column-by-column inserted into the L2-delta

12

L1-delta to L2-delta Merge Steps

• Step 1 (parallel)

– appends new entries to the dictionary

• Step 2 (parallel)

– column values are added using the dictionary
encodings

• Step 3

– propagated entries removed from the L1-delta

13

L1-to-L2-delta Merge is Cheap

• Step 1 and Step 2 can be performed in parallel

– # tuples to be moved is known in advance

• Needs no reconstruction of L2-delta structures

– just appends entries to the unsorted dictionary

• This merge can be incremental

• Minimal influence to the running transactions

14

Merge from L2-delta to Main

• Resource intensive task

– a new main structure is created out of the L2-
delta and the existing main

– should be carefully scheduled and highly
optimized

• Must be a complete merge

– the old L2-delta is closed and a new one is created

– retries the merge on failure

15

Persistency Mapping

• HANA provides Full ACID guarantees

– using REDO logs and save pointing

– merging makes it quite complicated

16

Outline

• Lifecycle management of records

• Merge details & optimization

• Summary & discussion

17

Merge Optimization

• The classic merge needs optimization because

– L2-delta to main merge is resource intensive

– Main store needs high compression rate

• Optimization: Re-sorting merge

• Optimization: Partial merge

18

The Classic Merge

• Step1:

– generate new dictionary

• Step2:

– generate new indices based on the new dictionary

19

The Classic Merge

20

The Classic Merge

21

The Classic Merge

22

Re-Sorting Merge

• Goal: higher compression rate

• Re-Sorting Merge
– reorganizes the content of the full table to yield a

data layout which provides higher compression
potential

– not easy because all records should have the same
order in all columns

– uses a scheme discussed in another paper

23

Partial Merge

• Goal: reduce merge overhead

• Partial Merge

– splits the main into two independent structures

• Passive main

– not part of the merge process

• Active main

– takes part in the merge process with the L2-delta

24

Partial Merge

25

Outline

• Lifecycle management of records

• Merge details & optimization

• Summary & discussion

26

Characteristics of Record Stages

27

Characteristics of Record Stages

28

Characteristics of Record Stages

29

Discussion

• When to merge?

– How do we know when the records are not likely
to be updated anymore?

• Why it must be a complete merge?

– Keep some in row-store, some in column-store?

30

