Efficient Transaction Processing
in SAP HANA Database

Presented by Henggang Cui
15-799b Talk

Motivation

* OLTP
— large number of concurrent users and transactions
— high update load
— very selective point queries

* OLAP

— aggregation queries over a huge volume of data
— compute statistical models from the data

Motivation

e Zoo of different systems with different
capabilities for different application scenarios

— OLTP: row-stores
— OLAP: column-stores

* However, workloads usually contain both

— transactional database needs statistical
information to make on-the-fly business decisions

— data-warehouses are required to capture
transactions feeds for real-time analytics

SAP HANA

* SAP HANA
— efficient processing for both OLTP and OLAP

— achieved through a sophisticated multi-step
record life cycle management approach

Outline

* Lifecycle management of records
 Merge details & optimization
 Summary & discussion

Lifecycle Management of Records

* Three stages of physical representation
— L1-delta
— L2-delta
— Main
* Records are propagated through different
stages in their lifetime

L1-delta Storage

e L1-delta

— accepts all incoming data requests

— stores records in row format (write-optimized)
 fast insert and delete
* fast field update
* fast record projection

— no data compression
— holds 10,000 to 100,000 rows per single-node

L2-delta Storage

e [2-delta

— the second stage of the record life cycle

— stores records in column format

— dictionary encoding for better memory usage
— unsorted dictionary

* requiring secondary index structures to optimally
support point query access patterns

— well suited to store up to 10 million rows

Main Storage

* Main
— final data format
— stores records in column format

— highest compression rate
* sorted dictionary
e positions in dictionary stored in a bit-packed manner
* the dictionary is also compressed

Lifecycle Management of Records

physical operators

——

<

write-optimized

representation

read-optimized
representatioft

Unified Table Access

e A common abstract interface to access
different stores

* Records are propagated asynchronously

— without interfering with running operations

* Two transformations (or merge steps)
— L1-deta to L2-delta
— L2-delta to main

11

Merge from L1-delta to L2-delta

* Row format to column format conversion
— rows are split into corresponding columnar values
— column-by-column inserted into the L2-delta

12

L1-delta to L2-delta Merge Steps

e Step 1 (parallel)

— appends new entries to the dictionary

e Step 2 (parallel)

— column values are added using the dictionary
encodings

* Step 3
— propagated entries removed from the L1-delta

13

L1-to-L2-delta Merge is Cheap

Step 1 and Step 2 can be performed in paralle

— # tuples to be moved is known in advance

Needs no reconstruction of L2-delta structures

— just appends entries to the unsorted dictionary

This merge can be incremental

Minimal influence to the running transactions

14

Merge from L2-delta to Main

e Resource intensive task

— a hew main structure is created out of the L2-
delta and the existing main

— should be carefully scheduled and highly
optimized

* Must be a complete merge

— the old L2-delta is closed and a new one is created
— retries the merge on failure

15

Persistency Mapping

* HANA provides Full ACID guarantees
— using REDO logs and save pointing
— merging makes it quite complicated

common unified table access methods

_______________________ T

bulk inserts \

updatcfinsert/d%:letc \L remen talé ;&artéalffull.; E
=% s WL

Outline

 Merge details & optimization
 Summary & discussion

17

Merge Optimization
* The classic merge needs optimization because

— L2-delta to main merge is resource intensive
— Main store needs high compression rate

* Optimization: Re-sorting merge
* Optimization: Partial merge

18

The Classic Merge

* Stepl:

— generate new dictionary

* Step2:

— generate new indices based on the new dictionary

19

The Classic Merge

L2-delta main

delta index Ee .
: dictionary main index

. entries \\\K

Belmont , 1 |
Cupertino! 2

dictionary

entries
[os Gatos, 1

sorted

Los Altos | 4

‘ Los Gatos i 5
fo Palo Alto ' 6
Vv |Saratoga ./

PaloAlto ' 6

RN R R R W W W

positions P
not stored Py

20

The Classic Merge

Los Gatos, 1 Belmont | 1
r\ Cupertino!' 2

SanJose 1 3

main delta Daly Ci 3

Los Altos | 4

l0s Gatos ! 5
PaloAlto ' 6
Saratoga | /7

Belmont , 1
Campbell ' 2
Cupertino! 3
Daly City 1 4

PETITILLY

sorted

Los Altos , 5
Los Gatos! 6
alo Alto 1 /
San Jose , 8
Saratoga ' 9

KN | =N
6 |6

new | |D|d

dictionary position mapping -

Belmont | 1
Campbell ! 2
Cupertino! 3 I
Daly City 1 4
Los Altos | 5
Los Gatos! 6
Palo Alto 1 7
San Jose , 8
Saratoga ' 9

new |

The Classic Merge

PEETTTENT

main delta

| old

dictionary position mapping

“.._main index

2nd phase:

main index generatlon

-|—'-|—=-I=-F=‘-4=-|

we O 00"'*4 co

delta entries

22

Re-Sorting Merge

* Goal: higher compression rate

* Re-Sorting Merge

— reorganizes the content of the full table to yield a
data layout which provides higher compression
potential

— not easy because all records should have the same
order in all columns

— uses a scheme discussed in another paper

Partial Merge

Goal: reduce merge overhead
Partial Merge

— splits the main into two independent structures

Passive main
— not part of the merge process
Active main

— takes part in the merge process with the L2-delta

Partial Merge

|||

: :

: :

T T L
I t

25

Outline

 Summary & discussion

26

Characteristics of Record Stages

read ODti mized - _ 0

Wnte Optlmlzed A N I T

workload optimization

L1-Delta L2-Delta Main

(a) workload optimization

27

Characteristics of Record Stages

high B O ___________________________ | __________

IDW S e o __________

memory consumption

per record

L1-Delta L2-Delta Main

(b) memory consumption

28

execution frequency

Characteristics of Record Stages

L1-Delta L2-Delta L2-Delta + Active Main

5 U 5
L2-Delta Active Main Passive Main

29

Discussion

* When to merge?

— How do we know when the records are not likely
to be updated anymore?

 Why it must be a complete merge?

— Keep some in row-store, some in column-store?

