H-Store : The End of an Architectural Era Stonebraker et al., VLDB 2007

Joy Arulraj CMU 15-799 : Paper Presentation

Carnegie Mellon

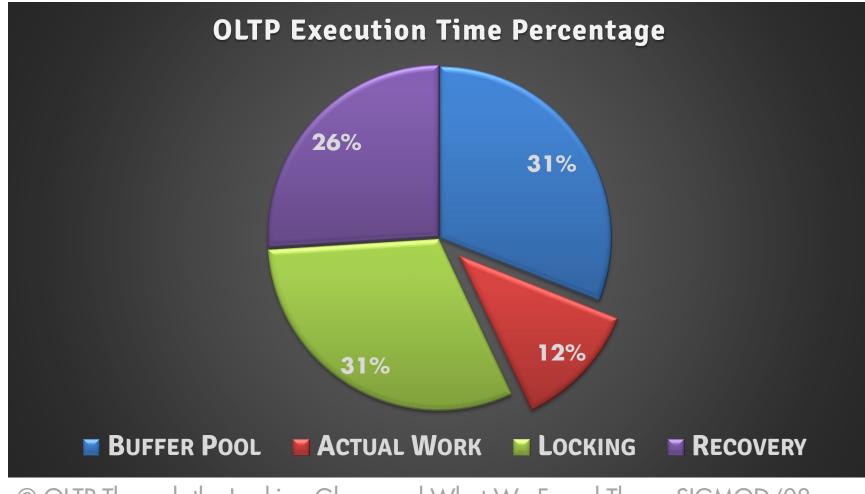
Talk Gist

"One size fits all" databases excel at nothing
 – Specialized databases and languages

Motivation

- System R (1974)
 - Seminal database design from IBM
 - First implementation of SQL
- Hardware has changed a lot over 3 decades

 Databases still based on System R's design
 Includes DB2, SQL server, etc.


Hardware Evolution

- Memory and disk capacity
 - 1000X larger
- Processors
 - 1000X faster
- But,
 - Disk bandwidth has grown very slowly
 - Disk latency for random accesses still high

Problem Statement

- Traditional database design
 - Disk oriented storage and indices
 - Multithreading to hide latency
 - Concurrency control using locks
 - Log based recovery
- Is traditional DB design still relevant ?

OLTP Bottlenecks

© OLTP Through the Looking Glass, and What We Found There, SIGMOD '08

Disk oriented storage

• Assumption

– Main memory can't hold the database

Main memory capacity has increased

 A lot .. commodity devices can hold 32 GB
 OLTP workloads <1TB => 32 node cluster

Multithreading

• Assumption

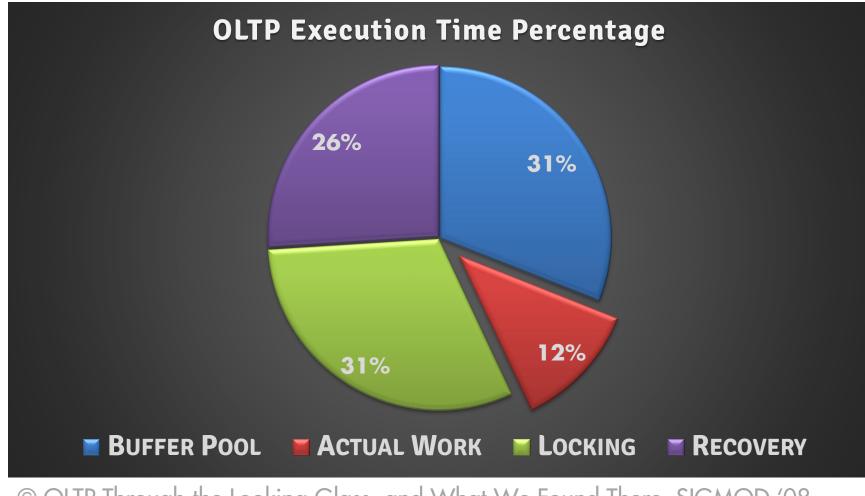
Disk accesses are slow => Must hide latency
 Multiple threads => Need concurrency control

- Disk accesses are still slow
 - But, what if we store the database in memory ?
 Single threaded model => No need for isolation

Concurrency control

- Assumption
 - Transactions used to be long (user input, disks)
 - Isolation obtained using locks
 - Pessimistic approach blocks at txn. start
- Transactions now much shorter
 Main memory latency, stored procedures

Log based recovery


- Assumption
 - Logs needed for faster recovery (few machines)
 - Redo log brings state till crash point
 - Undo log then removes effect of failed txns.
- Machines cheaper, and availability crucial

 Hot standby or peer-to-peer model
 Simplify logging remote replica for recovery

What just happened ?

- Assumptions are from a bygone era
 Need a clean design from scratch
- Design a specialized database
 Each world has its own constraints
 - This paper targets OLTP world

OLTP Bottlenecks

© OLTP Through the Looking Glass, and What We Found There, SIGMOD '08

New Design

- Buffering overhead

 Main memory holds database
- Locking overhead
 Single-threaded execution engine
- Latching overhead
 No shared data structures

New Design

- Logging overhead
 - Replication for recovery => No redo log
 - Transient undo log sufficient for rollback
- Transaction classes
 - Optimize concurrency control protocol

New Design

- Incremental scalability

 Shared nothing architecture
- Remove knobs/tuning parameters

 Personnel costs higher than machine costs
 Automatic physical database designer

Transaction Classes

- Example
 - Class : "Insert record in History where customer = \$(customer-Id) ; more SQL statements ;"
 - Runtime instance supplies \$(customer-Id), etc.
- Each transaction class has certain properties

 Optimize concurrency control protocols
 And commit protocols

Constrained Tree Schema

Single-sited transactions

- All queries hit same partition
- Constrained Tree Schemas
 - Root table can be horizontally hash-partitioned
 - Collocate corresponding shards of child tables
 - No communication between partitions

One-shot transactions

- No inter-query dependencies
- Execute in parallel without communication
 - Replicate read only parts
 - Vertical partitioning
 - Can decompose into single-sited plans
 - Local decisions => No redo log required

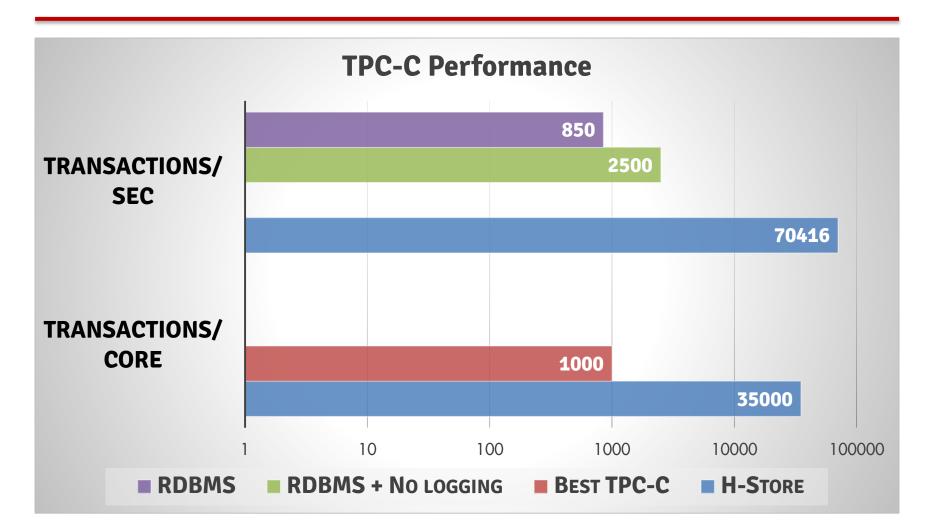
Two-phase and sterile classes

- Two-phase classes
 - Phase 1 : Read-only operations
 - Phase 2 : Updates can't violate integrity
 - No undo log required
- Sterile classes
 - Commute with other classes
 - No concurrency control needed

General transactions

- Basic Strategy
 - Timestamp ordering
 - Wait for "small period of time"
 - Preserve timestamp order (network delay)
- Advanced Strategy
 - Increase wait latency if too many aborts
 - Track read and write sets

Results


- H-Store
 - Targets OLTP workload

- Shared-nothing main memory database
- TPC-C benchmark
 - All classes made two-phase => No coordination
 Replication + Vertical partitioning => One-shot
 All classes still sterile in this schema => No waits

© H-Store (<u>http://hstore.cs.brown.edu/</u>), 2013

Results

Conclusions

- "One size does not fit all"
 - OLTP : relational model
 - OLAP : entity-relational model
 - Stream processing : hierarchical modelScientific : arrays
- SQL is not the answer

 No one size fits all language (PL world)
 Need more specialized little languages

Talk Summary

- "One size fits all" databases excel at nothing
 Specialized databases and languages
- H-Store
 - Clean design for OLTP domain from scratch
 - Emerging hardware support NVM, TM ?

Thanks !