
H-Store : The End of an
Architectural Era
Stonebraker et al., VLDB 2007

Joy Arulraj

CMU 15-799 : Paper Presentation

Talk Gist

• “One size fits all” databases excel at nothing

– Specialized databases and languages

Motivation

• System R (1974)

– Seminal database design from IBM

– First implementation of SQL

• Hardware has changed a lot over 3 decades

– Databases still based on System R’s design

– Includes DB2, SQL server, etc.

Hardware Evolution

• Memory and disk capacity

– 1000X larger

• Processors

– 1000X faster

• But,

– Disk bandwidth has grown very slowly

– Disk latency for random accesses still high

Problem Statement

• Traditional database design

– Disk oriented storage and indices

– Multithreading to hide latency

– Concurrency control using locks

– Log based recovery

• Is traditional DB design still relevant ?

OLTP Bottlenecks

31%

12%
31%

26%

OLTP Execution Time Percentage

BUFFER POOL ACTUAL WORK LOCKING RECOVERY

© OLTP Through the Looking Glass, and What We Found There, SIGMOD ‘08

Disk oriented storage

• Assumption

– Main memory can’t hold the database

• Main memory capacity has increased

– A lot .. commodity devices can hold 32 GB

– OLTP workloads <1TB => 32 node cluster

Multithreading

• Assumption

– Disk accesses are slow => Must hide latency

– Multiple threads => Need concurrency control

• Disk accesses are still slow

– But, what if we store the database in memory ?

– Single threaded model => No need for isolation

Concurrency control

• Assumption

– Transactions used to be long (user input, disks)

– Isolation obtained using locks

– Pessimistic approach – blocks at txn. start

• Transactions now much shorter

– Main memory latency, stored procedures

Log based recovery

• Assumption

– Logs needed for faster recovery (few machines)

– Redo log brings state till crash point

– Undo log then removes effect of failed txns.

• Machines cheaper, and availability crucial

– Hot standby or peer-to-peer model

– Simplify logging – remote replica for recovery

What just happened ?

• Assumptions are from a bygone era

– Need a clean design from scratch

• Design a specialized database

– Each world has its own constraints

– This paper targets OLTP world

OLTP Bottlenecks

31%

12%
31%

26%

OLTP Execution Time Percentage

BUFFER POOL ACTUAL WORK LOCKING RECOVERY

© OLTP Through the Looking Glass, and What We Found There, SIGMOD ‘08

New Design

• Buffering overhead

– Main memory holds database

• Locking overhead
– Single-threaded execution engine

• Latching overhead
– No shared data structures

New Design

• Logging overhead
– Replication for recovery => No redo log

– Transient undo log sufficient for rollback

• Transaction classes

– Optimize concurrency control protocol

New Design

• Incremental scalability

– Shared nothing architecture

• Remove knobs/tuning parameters

– Personnel costs higher than machine costs

– Automatic physical database designer

Transaction Classes

• Example

– Class : “Insert record in History where customer
= $(customer-Id) ; more SQL statements ;”

– Runtime instance supplies $(customer-Id), etc.

• Each transaction class has certain properties

– Optimize concurrency control protocols

– And commit protocols

Constrained Tree Schema

Customer

Order Order Order

Order Line

Order Line

Order Line

Order Line

Order Line

Order Line

Partition 1 Partition 2

Single-sited transactions

• All queries hit same partition

• Constrained Tree Schemas

– Root table can be horizontally hash-partitioned

– Collocate corresponding shards of child tables

– No communication between partitions

One-shot transactions

• No inter-query dependencies

• Execute in parallel without communication

– Replicate read only parts

– Vertical partitioning

– Can decompose into single-sited plans

– Local decisions => No redo log required

Two-phase and sterile classes

• Two-phase classes

– Phase 1 : Read-only operations

– Phase 2 : Updates can’t violate integrity

– No undo log required

• Sterile classes

– Commute with other classes

– No concurrency control needed

General transactions

• Basic Strategy

– Timestamp ordering

– Wait for “small period of time”

– Preserve timestamp order (network delay)

• Advanced Strategy

– Increase wait latency if too many aborts

– Track read and write sets

Results

• H-Store

– Targets OLTP workload

– Shared-nothing main memory database

• TPC-C benchmark

– All classes made two-phase => No coordination

– Replication + Vertical partitioning => One-shot

– All classes still sterile in this schema => No waits

© H-Store (http://hstore.cs.brown.edu/), 2013

http://hstore.cs.brown.edu/

Results

35000

70416

1000

2500

850

1 10 100 1000 10000 100000

TRANSACTIONS/
CORE

TRANSACTIONS/
SEC

TPC-C Performance

RDBMS RDBMS + NO LOGGING BEST TPC-C H-STORE

Conclusions

• “One size does not fit all”
– OLTP : relational model

– OLAP : entity-relational model

– Stream processing : hierarchical model

– Scientific : arrays

• SQL is not the answer
– No one size fits all language (PL world)

– Need more specialized little languages

Talk Summary

• “One size fits all” databases excel at nothing

– Specialized databases and languages

• H-Store

– Clean design for OLTP domain from scratch

– Emerging hardware support – NVM, TM ?

Thanks !

