Dremel:
Interactive Analysis of Web-Scale Database

Presented by Jian Fang

Most parts of these slides are stolen from here: http://bit.ly/HIPzeG

http://bit.ly/HIPzeG

What is Dremel

>

>

>

Trillion-record, multi-terabyte datasets at interactive speed
» Scales to thousands of nodes
» Fault and straggler tolerant execution
Nested data model
» Complex datasets; normalization is prohibitive
» Columnar storage and processing
Tree architecture (as in web search)
Interoperates with Google's data management tools
» In situ data access (e.g., GFS, Bigtable)
» MapReduce pipelines

Widely used inside Google

Analysis of crawled web documents

Tracking install data for applications on Android Market
Spam analysis

Results of tests run on Google's distributed build system

Disk 1/0 statistics for hundreds of thousands of disks

vV v v v Vv

Outline

» Nested columnar storage
» Query processing

» Experiments
>

Observations

Common Storage Layer

Google File System
Fault tolerance

Fast response time

vV v v Vv

Data can be manipulated easily

Rows vs Columns

DocId: 10 r 1
Links

Forward: 20 A
Name * *

Language B /\ E

Code: 'en-us'

Country: 'us'
Url: 'http://A' C /\ D

Name

Url: 'http://B' r I
1
v -

" e Readiess,

cheaper
decompression

Challenge: preserve structure, reconstruct from a subset of fields

Nested Data Model

message Document {
required int64 DocId;
optional group Links ({
repeated int64 Backward;
repeated int64 Forward;
}
repeated group Name {
repeated group Language {
required string Code;
optional string Country;

}

optional string Url;

DocId: 10
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A’
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

DocId: 20
Links
Backward: 10
Backward: 30
Forward: 80
Name
Url: 'http://C!’

)

Repetition and Definition Levels

DocId: 10
Links
» Values alone do not convey the Forward: 20
structure of a record Forward: 40
Forward: 60
» Repetition levels Name /
Language
» It tells us at what repeated field in the Code: 'en-us'
field’s path the value has repeated Country: 'us/
Language //}V
» Example: r1, Name.Language.Code Code: 'en’

» Repetition level: [0,2,1,1] Url: 'http://A'

Name
Language

Code: 'en-gb'
Country: 'gb'

Repetition and Definition Levels

» Definition Levels

» Specifying how many fields in a path
that could be undefined are actually
present in the record

» Example: Name.Language.Country

: Missing Language, 1

I d= 1"~

d=2 "

DocId: 10

Links
Forward: 20
Forward: 40
Forward: 60

Name
Language
Code: 'en-us'
Country: 'us'
| _ _Language
-~ ~1Code: 'en'
Url: 'http://A’
Name

- 1l: 'http://B'
v/

Name

Language
Code: 'en-gb'
Country: 'gb'

Column-striped representation

NULL

(Links.Backward |

10

30

R O |0

Docld - Name.Ur| ' Links.Forward
TR [T
10 0O 0 http://A | 0 2 20 0 2
20 0O 0 http://B | 1 2 40 1 2

NULL |1 1 60 1 2
http://C | 0 2 80 0 2

(Name.Language.Code (Name.Language.Country]
en-us | 0 2 us 0O 3
en 2 2 NULL |2 2
NULL |1 1 NULL |1 1
engb |1 2 gb 1 3
NULL |0 1 NULL |0 1

Record Assembly FSM

0 Docld message Document ({
required int64 DoclId;
. 0 . 1 optional group Links {
1@ Links.Backward]o—>[Links.Forward repeated int64 Backward;

‘_,,—’/ repeated int64 Forward;

vV)

0,1,2 repeated group Name {
[Name.Language.Code]—>[Name.Language.Country] repeated group Language {
2 required string Code;
optional string Country;

Name.Ur 0.1 }

| optional string Url;
] }
}

Transitions labeled with repetition levels

Reading two fields

0

1,2@ Name.Language.Country]

0

\4

DocId: 10 S1
Name
Language
Country: 'us'
Language
Name
Name
Language
Country: 'gb'
DocId: 20 SZ

Name

Query Processing

» Optimized for select-project-aggregate
» Very common class of interactive queries
» Single scan
» Within-record and cross-record aggregation

» Approximations: count(distinct), top-k
» Joins, temp tables, UDFs/TVFs, etc.

Serving Tree

root server

intermediate
servers

leaf servers
(with local
storage)

client

i

milinljs
i

storage layer (e.g., GFS)

Example: count()

SELECT A, COUNT(B) FROM T SELECT A, SUM(c)
0 GROUP BY A # FROM (R,;1 UNION ALL R,10)
T ={/gfs/1, Igfs/2, ..., /gfs/100000} GROUP BY A
R,1 R,2
SELECT A, COUNT(B)AS c SELECT A, COUNT(B)AS c
1 FROM T,1 GROUPBYA == FROM T,2 GROUP BY A
T,1 ={/gfs/1, ..., /gfs/10000} T,2 = {/gfs/10001, ..., /gfs/20000}

/

SELECT A, COUNT(B) AS ¢
3 | FROM T,1 GROUP BY A
T,1 = {/gfs/1}

Data access ops

Experiments

» 1PB of real data Table | Number of | Size (unrepl., | Number |Data | Repl.
(uncompressed, non- name | records compressed) | of fields | center | factor

replicated) 85 billion 87 TB
» 100K-800K tablets per T2 24 billion 13TB 530 A 3 X
table T3 4 billion /0TB 1200 A 3 X
» Experiments run during T4 1+ trillion 105TB 50 B 3 X
business hours TS5 1+ trillion 20 TB 30 B 2x

Read from disk

time (sec)

v [20 (e) parse as

'g 18 C++ objects
10x speedup o 16
using columnar E | 14 objects (@) read
storage E | 12 read +

J - 10 0 decompress
records

o 8 columns (c) parse as

E| 6 e C++ objects

ol 4 (b) assemble
2-4x overhead of g 5 /‘/ ¥ records
using records S v (a) read +

=L 0T T T ' decompress

Table partition: 375 MB (compressed), 300K rows, 125 columns

"cold" time on local dis
averaged over 30 runs

5 6
number of fields

7 8

10

MapReduce and Dremel Execution
Avg # of terms In txtField in 85 billion record table T1

10000
1000
100
10

1

Q1.

MR overheads: launch jobs, schedule 0.5M tasks, assemble re

execution time (sec) on 3000 nodes Sawzall program ran on MR:

num recs: table sum of int;
num words: table sum of int;
emit num recs <- 1;
emit num words <-
count words (input. txtField) ;

MR-records MR-columns Dremel
87 TB 05TB 05TB

SELECT SUM(count words (txtField)) / COUNT (*)
FROM T1

60

50

*0 w2 levels

30

20 - W 3 levels

10 —1 —— 4dlevels

0~ (returns 100s of records) | (returns 1M records)
Q2 Q3
(?2: SELECT country, SUM(item.amount) FROM T2
GROUP BY country
40 billion nested item

(23: SELECT domain, SUM(item.amount) FROM T2

Impact of serving tree depth

execution time (sec)

WHERE domain CONTAINS '’ .net’
GROUP RBRY domain

Observations

» Possible to analyze large disk-resident datasets interactively on commodity
hardware

» 1T records, 1000s of nodes

» MR can benefit from columnar storage just like a parallel DBMS
» But record assembly is expensive
» Interactive SQL and MR can be complementary

» Parallel DBMSes may benefit from serving tree architecture just like search
engines

More Information

» Big Query: http://code.google.com/apis/bigquery/

» Apache Drill: http://incubator.apache.org/drill/index.html

Thank You

http://code.google.com/apis/bigquery/
http://incubator.apache.org/drill/index.html

