
Dremel:

Interactive Analysis of Web-Scale Database
Presented by Jian Fang

Most parts of these slides are stolen from here: http://bit.ly/HIPzeG

http://bit.ly/HIPzeG

What is Dremel

 Trillion-record, multi-terabyte datasets at interactive speed

 Scales to thousands of nodes

 Fault and straggler tolerant execution

 Nested data model

 Complex datasets; normalization is prohibitive

 Columnar storage and processing

 Tree architecture (as in web search)

 Interoperates with Google's data management tools

 In situ data access (e.g., GFS, Bigtable)

 MapReduce pipelines

Widely used inside Google

 Analysis of crawled web documents

 Tracking install data for applications on Android Market

 Spam analysis

 Results of tests run on Google's distributed build system

 Disk I/O statistics for hundreds of thousands of disks

 ……

Outline

 Nested columnar storage

 Query processing

 Experiments

 Observations

Common Storage Layer

 Google File System

 Fault tolerance

 Fast response time

 Data can be manipulated easily

Rows vs Columns

A

B

C D

E

*

*

*

. . .

. . .

r1

r2

r1

r2

r1

r2

r1

r2

Challenge: preserve structure, reconstruct from a subset of fields

Read less,

cheaper

decompression

DocId: 10

Links

Forward: 20

Name

Language

Code: 'en-us'

Country: 'us'

Url: 'http://A'

Name

Url: 'http://B'

r1

Nested Data Model

7

message Document {

required int64 DocId;

optional group Links {

repeated int64 Backward;

repeated int64 Forward;

}

repeated group Name {

repeated group Language {

required string Code;

optional string Country;

}

optional string Url;

}

}

DocId: 10

Links

Forward: 20

Forward: 40

Forward: 60

Name

Language

Code: 'en-us'

Country: 'us'

Language

Code: 'en'

Url: 'http://A'

Name

Url: 'http://B'

Name

Language

Code: 'en-gb'

Country: 'gb'

r1

DocId: 20

Links

Backward: 10

Backward: 30

Forward: 80

Name

Url: 'http://C'

r2

Repetition and Definition Levels

 Values alone do not convey the

structure of a record

 Repetition levels

 It tells us at what repeated field in the

field’s path the value has repeated

 Example: r1, Name.Language.Code

 Repetition level: [0,2,1,1]

DocId: 10

Links

Forward: 20

Forward: 40

Forward: 60

Name

Language

Code: 'en-us'

Country: 'us'

Language

Code: 'en'

Url: 'http://A'

Name

Language

Code: NULL

Url: 'http://B'

Name

Language

Code: 'en-gb'

Country: 'gb'

r1

R = 0

R = 2

R = 1

R = 1

Repetition and Definition Levels

 Definition Levels

 Specifying how many fields in a path

that could be undefined are actually

present in the record

 Example: Name.Language.Country

DocId: 10

Links

Forward: 20

Forward: 40

Forward: 60

Name

Language

Code: 'en-us'

Country: 'us'

Language

Code: 'en'

Url: 'http://A'

Name

Url: 'http://B'

Name

Language

Code: 'en-gb'

Country: 'gb'

r1

Missing Country,

d = 2

Missing Language,

d = 1

Column-striped representation

value r d

10 0 0

20 0 0

value r d

20 0 2

40 1 2

60 1 2

80 0 2

value r d

NULL 0 1

10 0 2

30 1 2

DocId

value r d

http://A 0 2

http://B 1 2

NULL 1 1

http://C 0 2

Name.Url

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Name.Language.Code Name.Language.Country

Links.BackwardLinks.Forward

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

NULL 0 1

Record Assembly FSM

Name.Language.CountryName.Language.Code

Links.Backward Links.Forward

Name.Ur

l

DocId

1

0

1

0

0,1,2

2

0,11

0

0

Transitions labeled with repetition levels

message Document {

required int64 DocId;

optional group Links {

repeated int64 Backward;

repeated int64 Forward;

}

repeated group Name {

repeated group Language {

required string Code;

optional string Country;

}

optional string Url;

}

}

Reading two fields

DocId

Name.Language.Country1,2

0

0

DocId: 10

Name

Language

Country: 'us'

Language

Name

Name

Language

Country: 'gb'

DocId: 20

Name

s1

s2

Query Processing

 Optimized for select-project-aggregate

 Very common class of interactive queries

 Single scan

 Within-record and cross-record aggregation

 Approximations: count(distinct), top-k

 Joins, temp tables, UDFs/TVFs, etc.

Serving Tree

storage layer (e.g., GFS)

. . .

. . .

. . .leaf servers

(with local

storage)

intermediate

servers

root server

client

Example: count()

SELECT A, COUNT(B) FROM T

GROUP BY A

T = {/gfs/1, /gfs/2, …, /gfs/100000}

SELECT A, SUM(c)

FROM (R11 UNION ALL R110)

GROUP BY A

SELECT A, COUNT(B) AS c

FROM T11 GROUP BY A

T11 = {/gfs/1, …, /gfs/10000}

SELECT A, COUNT(B) AS c

FROM T12 GROUP BY A

T12 = {/gfs/10001, …, /gfs/20000}

SELECT A, COUNT(B) AS c

FROM T31 GROUP BY A

T31 = {/gfs/1}

. . .

0

1

3

R11 R12

Data access ops

. . .

Experiments

 1 PB of real data

(uncompressed, non-

replicated)

 100K-800K tablets per

table

 Experiments run during

business hours

Table

name

Number of

records

Size (unrepl.,

compressed)

Number

of fields

Data

center

Repl.

factor

T1 85 billion 87 TB 270 A 3×

T2 24 billion 13 TB 530 A 3×

T3 4 billion 70 TB 1200 A 3×

T4 1+ trillion 105 TB 50 B 3×

T5 1+ trillion 20 TB 30 B 2×

Read from disk

columns
records

objects

fr
o
m

 r
e
c
o
rd

s
fr

o
m

 c
o
lu

m
n
s

(a) read +
decompress

(b) assemble
records

(c) parse as
C++ objects

(d) read +
decompress

(e) parse as
C++ objects

time (sec)

number of fields

"cold" time on local disk,

averaged over 30 runs

Table partition: 375 MB (compressed), 300K rows, 125 columns

2-4x overhead of

using records

10x speedup

using columnar

storage

MapReduce and Dremel Execution

Sawzall program ran on MR:

num_recs: table sum of int;

num_words: table sum of int;

emit num_recs <- 1;

emit num_words <-

count_words(input.txtField);

execution time (sec) on 3000 nodes

SELECT SUM(count_words(txtField)) / COUNT(*)

FROM T1

Q1:

87 TB 0.5 TB 0.5 TB

MR overheads: launch jobs, schedule 0.5M tasks, assemble records

Avg # of terms in txtField in 85 billion record table T1

Impact of serving tree depth
execution time (sec)

SELECT country, SUM(item.amount) FROM T2

GROUP BY country

SELECT domain, SUM(item.amount) FROM T2

WHERE domain CONTAINS ’.net’

GROUP BY domain

Q2:

Q3:

40 billion nested items

(returns 100s of records) (returns 1M records)

Observations

 Possible to analyze large disk-resident datasets interactively on commodity

hardware

 1T records, 1000s of nodes

 MR can benefit from columnar storage just like a parallel DBMS

 But record assembly is expensive

 Interactive SQL and MR can be complementary

 Parallel DBMSes may benefit from serving tree architecture just like search

engines

More Information

 Big Query: http://code.google.com/apis/bigquery/

 Apache Drill: http://incubator.apache.org/drill/index.html

Thank You

http://code.google.com/apis/bigquery/
http://incubator.apache.org/drill/index.html

