

Crash Course on the History of Database Systems

Adapted from "What Goes Around Comes Around," by Hellerstein & Stonebraker

Administrivia

- Everyone should have gotten mailing list notification.
 - -Speaker sign up.
- If you don't want to take this for credit, please drop soon.
 - -You can still hang out.
 - -We won't judge.

Mhy

History Repeats Itself

- Old database issues are still relevant today.
- The "SQL vs. NoSQL" debate is reminiscent of "Relational vs. CODASYL" debate.
- Many of the ideas in today's database systems are not new.

1960s - IBM IMS

- First database system.
- · Hierarchical data model.
- Programmer-defined physical storage format.
- Tuple-at-a-time queries.

Hierarchical Data Model

A Duplicate Data

A No Independence

PARI

(<u>pno</u>,pname,psize,qty,price)

1001, Dallery Pack, Large, 500, S100

1970s - CODASYL

- COBOL people got together and proposed a standard.
- Network data model.
- Tuple-at-a-time queries.

Network Data Model

Schema

Stonebraker Lessons

- Physical and logical data independence are good.
- Tree-based data models are too restrictive.
- Record-at-a-time forces the programmer to do manual query optimization.

1970s - Relational Model

- Codd saw the maintenance overhead for IMS/Codasyl.
- Proposes database abstraction based on tables.

Relational Model

- Store database in simple data structures (i.e., tables).
- Access it through high-level language (i.e., SQL).
- Physical storage left up to implementation.

Relational Data Model

Schema **SUPPLIER PART** (sno, sname, scity, sstate) (pno,pname,psize) Supply (sno,pno,qty,price)

1970s - Relational Model

- System R IBM Research
- INGRES Berkeley
- Oracle Larry Ellison

Gray

Stonebraker

Fllison

1980s - Relational Model

- IBM comes out with DB2.
- SQL becomes the standard.
- Oracle wins marketplace.
- Stonebraker creates Postgres.

Stonebraker

Stonebraker Lessons

- Set-at-a-time interface offers better physical data independence.
- Database system optimizer is better than manual tuning.

1980s — Distributed DBs

- SDD-1 CCA
- System R* IBM Research
- Gamma Univ. of Wisconsin
- NonStop SQL Tandem

Bernstein

Mohan

DeWitt

Gray

Quick Detour

Database Architectures

Shared Memory

Shared Disk

Shared Nothing

Database Partitioning

Database Partitioning

Distributed OLTP

Partitions P4 Application Server

Distributed OLAP

1980s — Distributed DBs

- SDD-1 CCA
- System R* IBM Research
- Gamma Univ. of Wisconsin
- NonStop SQL Tandem

Bernstein

Mohan

DeWitt

Gray

1980s - OO Databases

- Avoid "relational-object impedance mismatch."
- Tight coupling between objects and database.

Zdonik

Object-Oriented Model

Application Code

Schema

class Student {

CTLIDENT

A Too Much Work

id name email
1001 Tone Loc funky@medina.com

STUDENT_PHONE

(sid, phone)

sid	phone
1001	444-444-4444
1001	555-555-5555

1990s - Boring Days

- Microsoft forks Sybase and creates SQL Server.
- MySQL is written as a replacement for mSQL.
- Postgres gets SQL support.

2000s - Internet Boom

- All the big players were heavyweight and expensive.
- Open-source databases were missing important features.
- · Custom scale-out middleware.
 - -Examples: eBay, Facebook

Middleware Approach

2000s - Data Warehouses

- Rise of the special purpose data warehouse DBMSs.
 - -Distributed / Shared-Nothing
 - -Relational / SQL
 - -Alternative storage models.
 - -Examples: Vertica, Greenplum, Aster Data, Netezza, ParAccel

2000s - NoSQL

- Focus on high-availability & high-scalability:
 - -Schemaless ("Schema Last")
 - -Not ACID
 - -Custom APIs instead of SQL.

CouchDB

2000s - NoSQL

- Alternative data models:
 - -Column-family (Cassandra, HBase)
 - -Document (MongoDB, CouchDB)
 - -Key-value (Riak, Dynamo)
 - -Graph (Neo4j, FlockDB)
- Usually open-source.
- "A" + "P" in CAP Theorem

Quick Detour

CAP Theorem

- Proposed by Eric Brewer that it is impossible for a distributed system to always be:
 - -Consistent
 - -Always Available
 - -Network Partition Tolerant
- Proved in 2002.

Brewer

Consistency Availability Partition Tolerant

2000s - NoSQL

- Alternative data models:
 - -Column-family (Cassandra, HBase)
 - -Document (MongoDB, CouchDB)
 - -Key-value (Riak, Dynamo)
 - -Graph (Neo4j, FlockDB)
- Usually open-source.
- "A" + "P" in CAP Theorem

2010s - NewSQL

- Provide same performance of NoSQL without giving up ACID
 - -Relational / SQL
 - -Distributed (Mostly)
- Usually closed-source.

2010s - NewSQL

Different solutions:

- -Specialized OLTP (H-Store, VoltDB)
- -Distributed MVCC (NuoDB)
- -Custom Hardware (Clustrix, Spanner)
- –Relaxed Consistency (MemSQL, SQLFire)
- -Middleware (ScaleBase, dbShards)

Observations

- Problems outlined in DeWitt paper are still relevant today:
 - -Mixing Workloads.
 - -Database Design.
 - -On-Line Reorganization.

Observations

- Innovations come from both industry and academia.
- IBM was the vanguard during 1970-1980s.
- Google is current trendsetter.

Next Week

- Distributed Transactions
- Consensus Protocols