Calvin: Fast Distributed Transactions for
Partitioned Database Systems

Presenter: Lianghong Xu

High-level Overview

* A transaction processing and replication layer
— Based on generic, non-transactional data store
— full ACID for distributed transactions
— Active, consistent replication
— Horizontal scalability

The Problem

* Distributed transactions are expensive

— Agreement protocol
* Multiple roundtrips in 2-phase commit
* Much longer than transaction logic itself
* Limits scalability

— Locking

* Lock held during the entire transaction
— Including network latency

* Possible deadlock

Consistent replication

* Many systems allow inconsistent replication
— Replicas can diverge, but are eventually consistent
— Dynamo, SimpleDB, Cassandra...

* Consistent replication: emerging trend
— Instant failover

— Increased latency, especially for geo-replication

Cost is only in latency, not throughput or contention

Goals of Calvin

* Eliminate 2-phase commit (scalability)

e Reduce lock duration (throughput)
* Provide consistent replication (consistency)

Approach:
Decoupling “transaction logic” from “heavy-lifting tasks”
‘replication, locking, disk access...

‘Deterministic concurrency control

Non-deterministic Database Systems

e Aborts on non-deterministic events
— E.g., node failure

* Serial ordering cannot be pre-determined
given certain transaction inputs

— Determined in the runtime
— Ordering can diverge for different executions
— Example: 2-phase locking

Serial Ordering in 2-phase Locking

number

of locks Ordering of locked points
determine the serialization order

time

[Slide from Yoongu Kim]

Deterministic database systems

* Given transactional inputs, serial ordering is pre-
determined.

e Benefits

— No agreement protocol
* No need to check node failures
* Recovery from other replicas
* No aborts due to non-deterministic events

— Consistent replication made easier
* Only need to replicate transactional inputs

* Disadvantage
— Reduced concurrency (potentially)

Sequencer

Scheduler

Storage

Architecture

Requests

Sequencer

Scheduler

Storage

Replica A

Sequencer

Scheduler

Storage

Replicated requests

Sequencer

Scheduler

Storage

Replica B

Sequencer

Scheduler

Storage

Architecture

Sequencer

Scheduler

Storage

Replica A

Sequencer

Scheduler

Storage

Replicated requests

Sequencer

Scheduler

Storage

Replica B

Architecture

Requests Replicated requests

Sequencer Sequencer Sequencer Sequencer

Scheduler

Partial request patch

Scheduler Scheduler Scheduler

Storage

Storage

Storage Storage

Replica A Replica B

Architecture

Client

Requests

P

V

Sequencer

’ < Partial request

Scheduler

Sequencer

4 Scheduler

Loca

Storage

Storage

Replica A

——

Replicated requests

Sequencer Sequencer

Scheduler

Storage

batch

Scheduler

Storage

Replica B

V

Sequencer

—

Scheduler

Loca

Storage

Requests

P

Architecture

Client
_——

Sequencer

‘ Partial r

4 Scheduler

Storage

equest

Replica A

Sequencer

patch »

Scheduler

Storage

—

Replicated requests

—

Sequencer

Scheduler

Storage

Replica B

Architecture

Client
Requests Replicated requests

e

. B BN B

N B N N NN ‘-* ’?* . D R .-*’?V
: -_-h _-‘.-_

-

Replica A Replica B

Sequencer and replication

* Only transactional inputs need to be replicated
— No need to worry about serial ordering (determinism)

* Asynchronous replication
— Master replica handles all requests
— Propagate to slave replicas afterwards
— Low latency, but complex failure recovery

* Synchronous replication
— Based on Paxos (ZooKeeper)
— Larger latency

— Throughput not affected
* Contention footprint remains the same

Scheduler and deterministic locking

Logical view of records
Global transaction order for its own share
Only responsible for locking locally stored data

Single-threaded locking manager
— Resemble 2-phase locking

— Enforce transaction ordering from sequencers
* For conflicted updates

— No deadlock

Deterministic Locking

Pre-determined

[Read B

serial ordering T2 .
| Write B

{

Memory §

§

Memory

Disk

Deterministic Locking

Pre-determined

-

[Read B

serial ordering T2 .-
| Write B
{
v ' T1:Lr(B) | b
g : T1: Lw(A) : : T2: Lw(B! : § : T3: Lr(C)

Deterministic Locking

T1 1

Pre-determined

serial ordering T2 .

T3 -[Rea

Read A
Read B

L Write A
[Read B

Write B

Memory gl T1: Lw(A) i § :

precede T2

Worker execution

Pre-determined
serial ordering

Memory

Disk

'llf(ead A
T1 -gRead B
\Write A}

Smmm——

7 | Read B

| Write B
T3 {Read C

— F{ ----- \‘

1 i

1 [

1 i

1 i

Pre-determined M meme %
serial ordering T2 . Read B
| Write B

Memory

WA\
WA\
W WA

Active participant Passive participant Passive participant

i
i
1
I
Pre-determined A .
serial ordering T2 .

l | Write B

Memory

7~ 7
N N
/ /
p. p.
() ()
A C

7
\
/
N
0

Active participant Passive participant Passive participant

- r{ ----- \‘

1 i

{1 l

1 i

1 1

Pre-determined M meme Y
serial ordering T2 .- Read B
| Write B

o e |

/

M),
emory

2

<
)
2
()

C

<
7
p.
? .

Disk

Active participant Passive participant Passive participant

- r{ ----- \‘

1 i

{1 l

1 i

1 1

Pre-determined M meme Y
serial ordering T2 .- Read B
| Write B

o e |

/

M),
emory

2

<
)
2
()

C

<
7
p.
? .

Disk

Active participant Passive participant Passive participant

Worker execution

Pre-determined
serial ordering

[Read A
T1 1 Read B
. Write A
a7 \
) {IrRea.a'B'=
I Write Bi

{

Memory

§

Active participant

Problem of deterministic locking

Deterministic locking

*om disk

i 1 Need

[Read B
| Write B

{

T2 -

e T2 cannot proceed because T1 is block waiting on disk access to A
e Even if T1 does NOT acquire any lock for B yet
* T3 can still proceed

Problem of deterministic locking

T2 -

Deterministic locking

i 1 Need

[Read B
| Write B

{

*om disk

Non-deterministic locking

Read B
Write B

-

Reordering

e T2 cannot proceed because T1 is block waiting on disk access to A
e Even if T1 does NOT acquire any lock for B yet
* T3 can still proceed

Calvin’s Solution

* Delay forwarding transaction requests
— Prefetech data from disk

— Hope: most (99%) transactions execute without need
to access disk

* Problem
— How long to delay?
* Need to estimate disk and network latency

— Tracking all in-memory records
* Need a scalable approach

— Future work

Checkpointing

 Fault-tolerance made easier in Calvin
— Instant failover

— Only log transactional inputs, no REDO log

* Checkpointing for fast recovery
— Failure recovery from a recent state

— Rather than from scratch

Checkpointing (cont.)

* Naive synchronous checkpointing
— Freeze one replica only for checkpointing
— Difficult to bring the frozen replica up-to-date

* Asynchronous variation of Zigzag

— Zigzag
e 2 copies per replica, 2 times memory footprint
* 1 copy is up-to-date, the other is the latest checkpoint
* Need to stop completely to ensure checkpoint consistency

— Calvin’s optimizations
* Pre-specified virtual consistency point, no need to stop the system
* Copy-on-write only during checkpointing, reduce memory footprint

* Asynchronous snapshot mode
— Storage layer needs to support multiversioning

Scalability

500000
400000
300000
200000

100000

total throughput (txns/sec)

0

0 10 20 30 40 50 60 70 80 90 100
number of machines

& 10000
2]

Z 8000
2 6000
S

S 4000
£

2 2000
8

a 0
g 0 10 20 30 40 50 60 70 80 90 100

number of machines

Figure 4: Total and per-node TPC-C (100% New Order)
throughput, varying deployment size.
* Calvin scales (near-)linearly
* Throughput comparable to world-record
*With much cheaper hardware

total throughput (txns/sec)

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

Scalability (cont.)

10% distributed txns, contention index=0.0001
100% distributed txns, contention index=0.0001
10% distributed txns, contention index=0.01

0 L=

0 10 20 30 40 50 60 70 80
number of machines

90 100

per node throughput (txns/sec)

30000

25000

20000 |}

15000

10000

5000

0

10% distributed txns, contention index=0.0001

10% distributed txns, contention index=0.01

100% distributed txns, contention index=0.0001 ——

0 10 20 30 40 50 60 70 80
number of machines

* Scales linearly for low contention workloads

* Scales sub-linearly when contention is high
 Stragglers (slow machines, execution process skew)
* Exacerbated with higher contention

90

100

Scalability under high contention

250

Calvin, 4 nodes
Calvin, 8 nodes

200 System R*-style system w/ 2PC -------- ;

150
100

50

slowdown (vs. no distributed txns)

0
0.001 0.01 0.1 1

contention factor

Calvin scales better than 2PC in face of high contention

