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High-level Overview

* A transaction processing and replication layer
— Based on generic, non-transactional data store
— full ACID for distributed transactions
— Active, consistent replication
— Horizontal scalability



The Problem

* Distributed transactions are expensive

— Agreement protocol
* Multiple roundtrips in 2-phase commit
* Much longer than transaction logic itself
* Limits scalability

— Locking

* Lock held during the entire transaction
— Including network latency

* Possible deadlock



Consistent replication

* Many systems allow inconsistent replication
— Replicas can diverge, but are eventually consistent
— Dynamo, SimpleDB, Cassandra...

* Consistent replication: emerging trend
— Instant failover

— Increased latency, especially for geo-replication

Cost is only in latency, not throughput or contention



Goals of Calvin

* Eliminate 2-phase commit (scalability)

e Reduce lock duration (throughput)
* Provide consistent replication (consistency)

Approach:
Decoupling “transaction logic” from “heavy-lifting tasks”
‘replication, locking, disk access...

‘Deterministic concurrency control



Non-deterministic Database Systems

e Aborts on non-deterministic events
— E.g., node failure

* Serial ordering cannot be pre-determined
given certain transaction inputs

— Determined in the runtime
— Ordering can diverge for different executions
— Example: 2-phase locking



Serial Ordering in 2-phase Locking

number

of locks Ordering of locked points
determine the serialization order

time

[Slide from Yoongu Kim]



Deterministic database systems

* Given transactional inputs, serial ordering is pre-
determined.

e Benefits

— No agreement protocol
* No need to check node failures
* Recovery from other replicas
* No aborts due to non-deterministic events

— Consistent replication made easier
* Only need to replicate transactional inputs

* Disadvantage
— Reduced concurrency (potentially)
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Sequencer and replication

* Only transactional inputs need to be replicated
— No need to worry about serial ordering (determinism)

* Asynchronous replication
— Master replica handles all requests
— Propagate to slave replicas afterwards
— Low latency, but complex failure recovery

* Synchronous replication
— Based on Paxos (ZooKeeper)
— Larger latency

— Throughput not affected
* Contention footprint remains the same



Scheduler and deterministic locking

Logical view of records
Global transaction order for its own share
Only responsible for locking locally stored data

Single-threaded locking manager
— Resemble 2-phase locking

— Enforce transaction ordering from sequencers
* For conflicted updates

— No deadlock
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Problem of deterministic locking

Deterministic locking
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e T2 cannot proceed because T1 is block waiting on disk access to A
e Even if T1 does NOT acquire any lock for B yet
* T3 can still proceed



Problem of deterministic locking
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Calvin’s Solution

* Delay forwarding transaction requests
— Prefetech data from disk

— Hope: most (99%) transactions execute without need
to access disk

* Problem
— How long to delay?
* Need to estimate disk and network latency

— Tracking all in-memory records
* Need a scalable approach

— Future work



Checkpointing

 Fault-tolerance made easier in Calvin
— Instant failover

— Only log transactional inputs, no REDO log

* Checkpointing for fast recovery
— Failure recovery from a recent state

— Rather than from scratch



Checkpointing (cont.)

* Naive synchronous checkpointing
— Freeze one replica only for checkpointing
— Difficult to bring the frozen replica up-to-date

* Asynchronous variation of Zigzag

— Zigzag
e 2 copies per replica, 2 times memory footprint
* 1 copy is up-to-date, the other is the latest checkpoint
* Need to stop completely to ensure checkpoint consistency

— Calvin’s optimizations
* Pre-specified virtual consistency point, no need to stop the system
* Copy-on-write only during checkpointing, reduce memory footprint

* Asynchronous snapshot mode
— Storage layer needs to support multiversioning



Scalability
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Figure 4: Total and per-node TPC-C (100% New Order)
throughput, varying deployment size.
* Calvin scales (near-)linearly
* Throughput comparable to world-record
*With much cheaper hardware
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Scalability under high contention
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Calvin scales better than 2PC in face of high contention



