Bigtable
15799 - Advanced Topics in DB

Mu Li
muli@cs.cmu.edu

October 2, 2013

stolen slides from Jeff Dean (a lot) and Edward Yoon (one)

Typical New Engineer

 Never seen a
petabyte of data

e Never used a
thousand machines

* Never really
experienced machine
failure

Our software has to make them successful.

Google

Data Storage: BigTable

What is it, really?

e 10-ft view: Row &
column abstraction for
storing data

 Reality: Distributed,

I A persistent, multi-level

Ble TA®E sorted map

Google

Comparing with Dynamo

Data Model: Table vs. Key-Value

Consistency: Atomic row mutation vs. record-at-a-time and
eventual consistency

How to run: Centralized management vs. each application run
its own instance

Access control vs. No

Focus: Easy to use vs. availability

Outline

Topics will be covered today:
Data Model and API
System Overviews
Implementation of Tablet Servers
Current State of Bigtable

Things are ignored

Refinement to improved the performance
Experiments

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

Google

BigTable Data Model

» Multi-dimensional sparse sorted map

(row, column, timestamp) => value

Rows

“www.cnn.com” ——

Google

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“contents:” Columns

Rows #

“‘www.cnn.com” ——>

Google

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“contents:” Columns

Rows #
“www.chn.com” ——» i

Google

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“contents:” Columns

Rows $

“‘www.cnn.com” ——>
m«— t;

Tlmestamps

Google

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“contents:” Columns

Rows $

__

“‘www.cnn.com” ——>

Titnestamps

Google

BigTable Data Model

» Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“contents:” Columns

Rows v

“‘www.cnn.com” ——>

Titnestamps

Google

API

Atomic single row mutation

RowMutation ri1(T, "com.cnn.www");
rl.Set("anchor:www.c-span.org"”, "CNN");
rl.Delete("anchor:www.abc.com");
Operation op;

Apply (&op, &rl);

scanning cells by rows, column, and timestamp

Scanner scanner (T);

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions ();

scanner .Lookup ("com. cnn.www") ;

for (; !stream->Done(); stream->Next()) {}

server-side scripts: Sawzall

integration with other products: Mapreduce, Pregel,
Parameter Server,

Current Design

In-house rack design

PC-class
motherboards

Low-end storage and
networking hardware

Linux
+ in-house software

i q'u' o

~7

e
=
r

0= %
= By
SRS
",I,

“‘aaa.com’

“cnn.com”

“cnn.com/sports.html”

“website.com”

“yahoo.com/kids.html”

“zuppa.com/menu.html”

Tablets (cont.)

“language:”

“contents:”

|
V3 ; i
Y) RO I AR
Tablets

Google

Tablets (cont.)

“language:” “contents:”
i 1

“aaa.com” A HE 2R
“cnn.com”
“cnn.com/sports.html”] i 5

Tablets
“website.com” 1 ; 2
“yahoo.com/kids.html” L L : !
“yahoo.com/kids.html” : -
“zuppa.com/menu.html” : i : i

Google

Typical Cluster

Machine 1 Machine 2 Machine N

Typical Cluster

Cluster scheduling masterl

Machine 1

| Chubby Lock servicel

Machine 2 Machine N

,_______
.

=

Typical Cluster

Cluster scheduling masterl

Machine 1

BigTable

| Chubby Lock servicel

Machine 2

BigTable

Machine N

=

Bigtable System Structure

Google

Bigtable System Structure

performs metadata ops +
load balancing

Google

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

Google

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

Google

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

handles failover, monitoring

Google

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

handles failover, monitoring holds tablet data, logs

Google

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

holds metadata,
handles master-election

Google

handles failover, monitoring holds tablet data, logs

Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

holds metadata,
handles master-election

Google

handles failover, monitoring holds tablet data, logs

Bigtable System Structure

performs metadata ops + Open()
load balancing

serves data serves data serves data

| Cluster scheduling system | GFS

holds metadata,
handles master-election

Google

handles failover, monitoring holds tablet data, logs

Bigtable System Structure

performs metadata ops + {ead/write Open()
load balancing
| v
serves data serves data serves data

| Cluster scheduling system | GFS

holds metadata,
handles master-election

Google

handles failover, monitoring holds tablet data, logs

Bigtable System Structure

performs metadata ops + {ead/write Open()
load balancing
| v
serves data serves data serves data

| Cluster scheduling system | GFS

holds metadata,
handles master-election

Google

handles failover, monitoring holds tablet data, logs

Find Tablet Location

Three-level hierarchy analogous to a B+ tree
1st level: bootstrapped from chubby
2nd level: use METADO tablet to find the owner of appropriate

META 1 tablets
3rd level: METAL table holds locations of all other tablets

Other

METADATA = —
tablets /V::,,,-::,,::

Root tablet
Chubby flle (1st METADATA tablet)

Tablet Assignment

» Master assigns tablets to tablet servers

Master keeps track of the set of live tablet Tablet servers

servers the current assignment of tablets to
Cluster region servers, including which tablets are
manager unassigned.

1) Start Chubby

a server
2) Create a lock

8) Acquire and

Delete the lock 9) Reassign unassigned

3) Acquire the lock tablets

4) Monitor

S 5) Assign tablets
D r TV
6) Check lock status

Store a tablet

A tablet is maintained by one tablet server.

A tablet consists of serveral SSTable blocks with an index to
store the first and last key of the block, and stored in GFS

SSTable SSTable SSTable
64Kb 64Kb 64Kb

index

Tablet Serving

Updates are stored in tablet log and

new ones in memtable (in memory)
old ones in SSTables

For read, first check memtable, then SSTables

memtable

Memory
GFS

tablet log B

SSTable Files

Compaction

minor compaction

convert memtable into an new SSTable and write into disk
save memory

merging(major) compaction

read several SSTable and memtable and merging into a few
(exact one) SSTable
save disk due to high compression rate, remove deleted entries

BigTable Status

* Production use for 100+ projects:
— Crawling/indexing pipeline
— Google Maps/Google Earth
— My Search History
— Google Print
— Orkut
— Blogger

 Currently ~500 BigTable clusters
* Largest cluster:

—70+ PB data; sustained: 10M ops/sec; 30+ GB/s I/O

Go »g[c

BigTable: What's New Since OSDI'067?

Lots of work on scaling
Service clusters, managed by dedicated team
Improved performance isolation

—fair-share scheduler within each server, better
accounting of memory used per user (caches, etc.)

—can partition servers within a cluster for different users
or tables

Improved protection against corruption
—many small changes

—e.g. immediately read results of every compaction,
compare with CRC.

» Catches ~1 corruption/5.4 PB of data compacted

Gox)8[6

BigTable Replication (New Since OSDI'06)

» Configured on a per-table basis

« Typically used to replicate data to multiple bigtable
clusters in different data centers

» Eventual consistency model. writes to table in one cluster
eventually appear in all configured replicas

* Nearly all user-facing production uses of BigTable use
replication

Google

BigTable Coprocessors (New Since OSDI'06)

« Arbitrary code that runs run next to each tablet in table

—as tablets split and move, coprocessor code
automatically splits/moves too

» High-level call interface for clients

—Unlike RPC, calls addressed to rows or ranges of rows
» coprocessor client library resolves to actual locations

—Calls across multiple rows automatically split into multiple
parallelized RPCs
+ Very flexible model for building distributed services

—automatic scaling, load balancing, request routing for apps

Go »8[6

Example Coprocessor Uses

« Scalable filesystem metadata management for Colossus
(next gen GFS-like file system)

« Distributed language model serving for machine
translation system

« Distributed query processing for full-text indexing support

* Regular expression search support for code repository

Goc)gle

