
A New Presumed Commit Optimization
for Two Phase Commit

Butler Lampson and David Lomet
DEC Cambridge Research Lab
One Kendall Square, Bldg 700

Cambridge, MA 02139

Abstract

Two phase commit (ZPC) ia used to coordinate the
commitment of trunsactiom in distributed systems.
The standard 2PC optimization is the presumed abort
variant, which wea fewer messages when trannsactions
are aborted and allows the coordinator to forget about
aborted transactions. The presumed commit variant
of 2PC wea even fewer messages, but its coordina-
tor must do additional logging. We describe a new
form of presumed commit that reduces the number
of log writes while preserving the reduction in me.+
saged, bringing both these costs below those of pre-
sumed abort. The penalty for this is the need to retain
a small amount of crash related information forever.

1 Introduction

1.1 Coordinating Distributed Commit

Distributed systems rely on the two phase commit
(2PC) protocol to coordinate the commitment of
transactions 11, 41. 2PC guarantees the atomicity of
distributed transactions, that is, that all cohorts of a
transaction either commit or abort the transaction.
The cost of 2PC is an important factor in the perfor-
mance of distributed transactions.

l It requires multiple messages in multiple phases.
These messages have both substantial computa-
tional cost, which affects system throughput, and
substantial delay, which affects response time.

Pwmierion to copy without fee all or part of thie material ir
granted protided that the copier are not made or dirtributed
for direct commercial advantage, the VLDB copyright notice
and tbe title of the prrblication and itr date appear, and notice
ie giren that copfig ie bv permireion of the Very Loge Data
Baw Endowment. To copy otherutiee, or to reprbli~h, require*
a fee and/or special pennirrion from the Endowment.

Proceedings of the 10th VLDB Conference,
Dublin, Ireland, 1998

l It requires that information about transactions
be recorded stably to ensure that transactions
remain atomic even if there is a failure during
the commit protocol. This is usually done by
writing information to a log. When information
must be stable at some point in the protocol,
the log must be “forced”, that is, the write must
be completed before proceeding to the next step.
Forced writes cost more than simple writes be-
cause they require actual I/O, whether a block
of the log is filled or not.

1.2 This Paper

In this paper we describe a new variant of 2PC whose
message cost is as low as the best alternative and
whose coordinator logging cost is substantially less.
The paper is organized as followe. In section 2 we
describe the basic form of 2PC, with particular em-
phasis on message cost and the coordinator’s need to
be able to recover its “database” of protocol related
information. In section 3 we present the traditional
ways of optimizing 2PC, by presuming the outcome of
transactions that do not have entries in the coordin&
tar’s database. Section 4 explains what information
is essential for recovering the protocol database after
a coordinator crash, and how it can be provided us-
ing fewer log writes. The protocol that results from
exploiting this new approach to recovery of the pro-
tocol databaze is described in section 5. Finally, we
discuss the virtues and limitations of this approach
to 2PC optimization in section 6.

2 Two Phase Commit

Commit coordination and its optimization5 are die-
cussed thoroughly in [3, 8, 91. We recap this diecus-
sion here, beginning with a description of the basic
veraion of two phase commit. In this version the co-
ordinator requires very explicit information, which is

630

why it is often called the “presumed nothing” proto-
col or PrN. This is in contrast to optimised versions
that do make presumptions about missing informe-
tion. (Note, however, that in fact, PrN makes pre-
sumptions in some cases [lo].)

2.1 The Protocol Messages

To commit a distributed transaction, PrN requires
two messages from coordinator to cohort and two
messages from cohort to coordinator, or four mes-
sages in all. The protocol has the following steps:

1. The coordinator sends PREPARE messages to
all cohorts to notify them that the transaction is
to be terminated.

2. Each cohort then sends a vote message (either a
COMMIT-VOTE or an ABORT-VOTE) on the
outcome of the transaction. A cohort responding
with a COMMIT-VOTE is now prepared.

3. The coordinator commits the transaction if all
cohorts send COMMIT-VOTES. If any c*
hort sends an ABORT-VOTE or the coordina-
tor times out waiting for a vote, the coordinator
aborts the transaction. The coordinator sends
outcome messages (i.e. COMMIT or ABORT)
to all cohorts.

4. The cohort terminates the transaction according
to its outcome, either committed or aborted, and
then ACKs the outcome message.

2.2 Cohort Activity

A cohort must log enough information stably so that
it can tolerate failures both before the commit pro-
tocol begins and during the commit protocol. If a
cohort fails, it’s necessary to abort every transaction
that has had any activity there and is not yet pro
pared there. Otherwise updates might be lost, or seri-
alizability might be compromised because read locks
are released prematurely as a result of the failure.
Hence the cohort must vote to abort a transaction if
the cohort has failed since the first time it saw any
activity for the transaction. Two ways to ensure this
which do not require any logging are given below.

l The client marks the first action of a transaction
that it sends to each cohort. The cohort records
a transaction as active when it sees an action
marked as first, and votes to abort a transaction
unless it’s recorded as active.

l The cohort counts the number of actions it has
seen for each transaction, and the client counts
the number of actions it has sent to each cohort.
The client passes all the counts to the coordineG
tor with the commit request and the coordinator
passes each count on to the proper cohort. The
cohort votes to abort if its count is different.

Before responding with a COMMIT-VOTE, a co-
hort must stably record that it is prepared. This
makes it possible for it to commit the transaction
even if it is later interrupted by a crash. If a pre-
pared cohort does not receive a transaction outcome
message promptly, or crashes without remembering
the outcome, the cohort asks the coordinator for the
outcome. It keeps on asking until it gets an answer.
(This is the blocking aspect of 2PC.)

Before ACKing a COMMIT or ABORT outcome
message, a cohort writes the transaction outcome to
its log. The ACK .meseage tells the coordinator that
the cohort will not ask again about this transaction’s
outcome. If the cohort crashes, its recovery will re-
trieve the outcome from the log without asking the
coordinator. The coordinator can therefore discard
the outcome for this transaction once all the cohorts
have ACKed. The cohort must complete the outcome
log write before sending the ACK message. There is
no urgency about sending the ACK, however, because
its function is only a bookkeeping one, i.e., to per-
mit the garbage collection of the protocol database
(described in the next subsection). Hence the cohort
can group both the log writes and the ACK messages,
amortising their costs over several transactions.

2.3 The Protocol Database

The coordinator maintains a main memory protocol
database that contains, at a minimum, the states of
all transactions currently involved in 2PC. The proto-
col database enables the coordinator both to execute
the 2PC protocol and also to answer inquiries from
cohorts about transaction outcome. As we saw in
the previous subsection, cohorts make such inquiries
when they recover from a crash or when messages are
lost; these failures can occur at any time. Because
the coordinator can also fail, it keeps a log of proto-
col related activity so that it can recover the protocol
database.

The protocol database for PrN contains entries
for all transactions, committed, aborted, or still ac-
tive, that have registered with the coordinator but
have not completed the protocol. A PrN coordina-
tor enters a transaction into its protocol database
when that transaction is initiated. A transaction’s

631

[Tid 1 Stable 1 State [{Cid 1 Vote 1 A& } 1

I I Yea I Initiated I I None I Yes 1
No Preparing Abort No

Aborted FL0
Committed commit

Figure 1: The format of a transaction entry in the
protocol database. Each transaction is identified by
a Tid. “Stable” indicates whether the existence of
the transaction is stably recorded on the log. The
%tatea” of a transaction are (i) ?nitiated” indicating
that it ie known to the system; (ii)“Preparing” indi-
cating that a PREPARE message haa been sent, etc.
A transaction may have several cohorts, each identi-
fied by a cohort id or Cid. The UVote” indicates how
the cohort voted in response to the PREPARE mea-
sage, ‘Ack” whether the outcome message has been
ACKed.

entry includes ita set of cohorts and the coordin&
tar’s knowledge of their protocol state: hae a cohort
responded to the PREPARE message with a vote,
was it a COMMIT-VOTE or an ABORT-VOTE,
has it ACKed the transaction outcome message, etc.
The format for a transaction entry in the protocol
database is given in Figure 1.

The ACK message helps the coordinator manage
the protocol database. As each cohort ACKs, the
coordinator can drop the cohort from the traneac-
tion’s entry. When all cohorts have so responded,
the coordinator deletes the transaction entry from ite
database.

2.4 Coordinator Recovery

2.4.1 Logging for Recovery

We assume that a transaction manager (TM) servea
as the coordinator. The TM logs protocol activity to
ensure that it can recover the protocol database. It
does not log for transaction durability (directly). For
example, fully ACKed transactions are not pretrent
in the protocol database and do not require recov-
ery. How much is logged affects how precisely the
protocol database can be reconstructed after a coor-
dinator crash. For PrN, logging uaually involves two
log records.

Before sending the outcome message, the PrN co-
ordinator forces the transaction outcome on its log.
This act either commits or aborts the transaction and
permits recovery of the transaction’s entry from this
point on. Thus, transactions .that have an outcome
have a stable log record documenting it.

After receiving ACKe of the outcome message from
all cohorts, the PrN coordinator writes a non-forced
END record to make this information durable. The
END record tells the coordinator’s recovery not to re-
store the traneaction’e entry in the protocol database
after a crash, and hence it will not again ask the co-
horts for ACKe.

2.4.2 Less Than Full Recovery

If we take the PrN “presumed nothing” character-
isation literally, we need to write many additional
log records, usually forced, in order to reconstruct
the protocol database precisely, including information
about all aborted transactions. This requires that be-
fore sending a PREPARE message we force to the log
the content8 of a transection’s protocol database en-
try. If the coordinator crashes before the outcome is
decided, we then have a stable record which allowa us
to explicitly abort the transaction.

As PrN ie usually described, however, the ability to
recover information about undecided transactions is
sacrificed to reduce logging coat. Traditionally, noth-
ing about the transaction is logged until ite outcome
ie logged, and hence the transaction entry ia lost if the
coordinator crashes earlier than thb. Cohorts that in-
quire about a transaction not in the protocol database
are directed to abort the transaction. That is, these
transactions are UpnBumed” to have aborted.

There are several ways to nave log writee and cope
with the less than complete information that exists
after recovery. For example, the number of cohorts
that need to be contacted to re-ACK outcome mes-
sages depends on whether each ACK is logged, only
completion of all ACKing is logged, or there is no
logging related to ACKa. These choices do not affect
the correctness of 2PC, but they do affect the cost of
recovering from coordinator crashes.

2.5 Summary for the PrN Protocol

To commit a transaction, a PrN coordinator does
two log writes, the commit record (forced) and the
transaction end record (not forced). In addition, it
aends two m-gee to each of ittr cohorts, PREPARE
and COMMIT. In response, each cohort does two log
writes, a prepare record and a commit record (both
forced), and trends two messages, a COMMIT-VOTE
and a final ACK. These are tabulated in Table 1,
which ie similar to the table in [9].

632

I ..-_ ----.IL.m,~P m, n)m, n, q m,n,q
2,2,2 -
2, 2, 2 0, 0, 1
2, 1, 1 0, 0, 1
2, 1, 1 0, 0, 1 1

Table 1: The message and log write costs to commit
a transaction for 2PC and its optimizations: m log
records, n forced log records, p messages to update
cohorts, and q messages from the cohort. All protocol
variants send only one message to read-only (R-O)
cohorts. A read-only cohort sends no messages when
the coordinator knows that the cohort is read-only.

3 Presumed Optimization

As we have seen, after a failure a PrN coordinator
sometimes presumes that a transaction is aborted
when it gets an inquiry about a transaction that is not
in its protocol database. This works because there
are only two possible outcomes of a transaction, and
PrN always remembers which transactions have com-
mitted. Thus, it is safe to presume that all other
transactions have aborted, whether the coordinator
is aware of them or not.

We can exploit this property more extensively than
PrN does by systematically purging entries from the
protocol database for either the aborted or the com-
mitted transactions. We then simply presume the
purged outcome for any transaction that lacks a
database entry. We do not have to recover purged
entries, so we do not have to log their protocol activ-
ity. Some messages as well as some log writes now
become unnecessary. Below, we briefly describe two
published 2PC optimizations, one presuming abort
and the other presuming commit.

3.1 Presumed Abort

In the absence of information about a transaction in
its protocol database, a presumed abort (PrA) coor-
dinator presumes the transaction has aborted. This
abort presumption was already made occasionally by
PrN. PrA makes it systematically to further reduce
the costs of messages and logging. Once a transaction
has aborted, its entry is deleted since a missing entry
denotes the same outcome. No information need be
logged about such transactions because their protocol
database entries need not be recovered.

We must guarantee that the protocol database
always contains entries for committed transactions

which have not yet completed all phases of 2PC.
These entries must be recoverable across coordina-
tor crashes. This means that as in PrN, the coor-
dinator must make transaction commit stable before
sending a COMMIT message, by forcing this outcome
to its log. PrA deletes the protocol database entries
for committed transactions when 2PC completes in
order to limit the size of the database, just as PrN
does. And the same garbage collection strategies are
also possible.

A coordinator need not make a transaction’s en-
try stable before its commit because an earlier crash
aborts the transaction, and that is the presumed out-
come in the absence of information. Only a commit
outcome needs to be logged (with a forced write).
Since there is no entry in the protocol database for an
aborted transaction, there is no entry in need of dele-
tion, and hence no need for an ACK of the ABORT
outcome message.

In summary, PrA aborts a transaction more
cheaply than PrN, and it commits one in exactly the
same way. The costs of commit are tabulated in Ta-
ble 1.

3.2 Presumed Commit

For presumed commit (PrC), the coordinator ex-
plicitly documents which transactions have aborted.
While this has some apparent symmetry with PrA,
which explicitly documents committed transactions,
in fact there is a fundamental difference. With PrA,
we can be very lazy about making the existence of
a transaction stable in the log. If there is a failure
first, we presume it has aborted. But PrC needs a
stable record of every transaction that has started to
prepare because missing transactions are presumed to
have committed, and a commit presumption is wrong
for a transaction that fails early. Traditionally this
has meant that at the time 2PC is initiated and a
transaction is entered into the protocol database, the
coordinator forces a transaction initiation record to
the log to make its database entry stable. This entry
can then be recovered after a coordinator crash, so
that an uncommitted transaction is aborted rather
than presumed to have committed.

With PrC, a transaction’s entry is removed from
the protocol database when it commits, because miss-
ing entries are presumed to have committed. If CO-
horts subsequently inquire, they are told the transac-
tion committed (by presumption). Thus, PrC avoids
ACK messages for committed transactions, which
is the common case and hence a significant sav-
ing (much more important than avoiding ACKs for
aborted transactions).

633

We must ensure that a committed transaction’s
entry is not re-inserted into the protocol database
when the coordinator recovers from a crash. If this
happened, we might think the transaction should be
aborted. Hence, like PrN and PrA, PrC forces com-
mit information to the log before sending the COM-
MIT message. Logically, this log write erases the ini-
tiation log record, since lack of information implies
commit. However, given the nature of logs, it is eas-
ier to simply document the commit by forcing a com-
mit record to the log tail. The commit log record
tells us not to include the transaction in the protocol
database of aborted transactions.

With PrC, both the protocol database entry and
the initiation log record list all cohorts from which
ACKs are expected if the transaction aborts. When
all the ACKs have arrived, the entry can be garbage
collected from the protocol database. Like PrN, PrC
writes a non-forced end record to the log at this point
to keep the transaction from being re-entered into
the protocol database. No separate abort record is
needed.

In summary, PrC commits a transaction with two
forced log writes, the initiation record and the com-
mit record. In addition, it sends two messages to each
cohort, PREPARE and COMMIT. In response, each
cohort forces a prepare log record and writes a com-
mit log record. The commit record need not be forced
because a prepare record without a commit record
causes the cohort to inquire about the outcome. The
coordinator, not finding the transaction in its proto-
col database, will respond with a COMMIT message.
The cohort sends one message, its COMMIT-VOTE.
No final ACK is required. These costs are tabulated
in Table 1.

3.3 Read-Only Optimizations

When a cohort is read-only, it has done no logging and
does not care about the transaction outcome. It only
wants to know that the transaction is completed so it
can release its locks. Such a cohort does not need to
receive the transaction outcome message. Regardless
of whether a transaction commits or aborts, whether
it is an update transaction or a read-only transac-
tion, and what variant of 2PC is used, the activity
of a read-only cohort is the same. To avoid receiving
an outcome message it sends a READ-ONLY-VOTE.
Then it releases its locks and forgets the transaction.

Thus a read-only cohort writes no log records and
sends one message. This is the read-only optimira-
tion. It only guarantees serializability if it is known
before the commencement of the 2PC protocol that
cohorts have completed all their normal activity.

(Section 6 discusses the impact if normal transaction
activity can continue after 2PC begins,)

The coordinator removes read-only cohorts from
the list of cohorts that should receive the transactiou
outcome message. If every cohort sends a READ-
ONLY-VOTE, then the coordinator sends no out-
come message. In addition, it no longer matters
whether the transaction is considered committed or
aborted. Hence the coordinator can choose whichever
outcome permits the least logging.

PrA: Abort the transaction by deleting its entry
from the protocol database.

PrC: Abort the transaction by writing an unforced
abort/end record and deleting its entry from the
protocol database.

3.4 Advantage of Presumed Abort

It is the coordinator logging that makes PrA prcfer-
able to PrC. To commit a transaction, a PrC coor-
dinator forces two log records, while PrA forces only
one record; its other log write is not forced. The extra
forced write is for PrC’s transaction initiation record,
and it is needed for every transaction. Hence, it shows
up in both update and read-only transactions.

4 Fewer PrC Log Writes

The PrC protocol has a decided advantage in message
costs. Hence, we focus on reducing its coordinator
logging costs. In particular, we want to avoid forc-
ing the initiation record. This forced log write doc-
uments that the transaction has initiated the com-
mit protocol. It permits us to explicitly notify co-
horts when a transaction aborts because the coordi-
nator crashes, and to garbage collect its entry in the
protocol database once all the cohorts have ACKed
the abort. To avoid this log write, we need to know
how a coordinator identifies transactions that were in
the active protocol phase at the time of a crash, and
how it manages the protocol database when it can-
not garbage collect transactions that are aborted by
a crash. Our fundamental idea is to (i) give up full
knowledge after a coordinator crash of the transac-
tions that were active before the crash and (ii) give up
on garbage collecting the information that we do have
about transactions that were active before a crash.

4.1 Potentially Initiated Transactions

Instead of full knowledge ahut th rrclivc Lrrr~mrrc
tions, after recovery we settle for minitmrl knowledge

ocumented active trarusctionr
Recent trsnractione

~tidhs--~Laet transaction that may have executed 1
(willbe higher than tid.ta) 1
A trauaction lower than any undocumented
active transaction
Highest tid w-able log record
Max no. of active trena. with tid > tid.to

Table 2: The terms used in describing the NPrC 2PC
optimization.

about all the transactions that may have been active
at the time of a crash. We denote this set of trans-
actions that may have initiated but did not commit
by IN. It must include all the transactions that were
actually active, but it may also include transactions
that were never initiated as well as transactions that
aborted. Since we do not know the cohorts for trans-
actions in IN, we cannot garbage collect their entries
from the protocol database.

We can reasonably bound IN without forcing ini-
tiation records and thus eliminate the need for these
forced writes. To do this, we assume that transac-
tion identifiers (lids) are assigned in monotonically
increasing order at a coordinator. Then, we find a
high tidh and a low tide such that the tids of all such
undocumented transactions must lie between them.
These are the “recent” tide; we define

REC = (tid 1 tidr < tid < tidt,) (1)

(Table 2 defines the notation that we use in this pa-
per-1

Let us denote the set of tids of committed and sta-
bly documented transactions aa COM. Then we de-
fine IN as:

IN = REC - COM = REC - (COM n REC) (2)

(COMnREC) is simply the set of &da in REC which
have committed.

No undocumented transaction that has begun 2PC
has a tid less than tidl. No transaction with a tid
higher than tidy has begun 2PC. Neither tidy nor
tit& need be a tid of an actual transaction. They are
simply bounds on transaction identifiers associated
with this set.

To sum up the preceding discussion, we represent
the set of initiated transactions IN for each system
crash with the following data structure:

< lidl, tidy, COM n REC > (3)

All tide in IN have abort outcomes by presump-
tion, whether they initiated the 2PC protocol or not.
IN contains the set active at the time of a crash and
hence aborted. Thus, responding to inquiries about
these transactions with an abort is appropriate. The
set IN may include non-existent transactions and
those that never began the 2PC protocol. It does not
matter whether these are deemed to have committed
or aborted because no cohorts will ever inquire as to
their status. We must, however, ensure that these
tids are not re-used for this to remain true.

Two problems persist:

1. How do we determine IN at recovery time and
make sure that its tic& are not roused?

2. How do we represent the information contained
in IN in a compact fashion, given that garbage
collection may not be feasible, and hence that
the value of IN after a crash may need to be
retained permanently?

4.2 Recovering IN After a Crash

4.2.1 Determining tidh

We describe two straightforward approaches to de-
termining tidh. Both prevent transactions with tids
greater than tidy from beginning.

A Method: We refer to the-transaction with the
highest tid present on the log as t&,. After
a crash, we determine tid,t, by reading the log.
We choose a fixed A, say of 100 tids. Then
tidh = lid at,, + A. Having a fixed A means that
no extra logging activity is needed to make it
possible to recover tidh.

Logging tidh: We determine tidh during recovery
by reading its value explicitly from the log. This
requires us to periodically write candidate tidh’s
to the log. The last candidate tidh logged be-
fore a crash becomes the tidh for the crash. To
avoid having to force a log record when a trans-
action begins the 2PC protocol, we set tidh to
be a number of tids beyond the currently used
highest tid. This approach permits us to adapt
i!idh to system load.

Regardless of how tidh is determined, after a crash
the coordinator must use tids that are greater than
tddh. This ensures that no tid of IN is re-used, and
hence that the tids of IN have a single outcome,
namely abort.

635

4.2.2 Determining tidl

Recall that tid, is the lower bound for the tida of
active and undocumented transactions. All transac-
tions with tids less than tidl that have begun since the
last crash and have not completed the protocol have
either a commit or an abort record in the log. (With
the variation for recalcitrant transactions described
in section 6, they might also have an explicit transac-
tion initiation log record.) Having a tight bound for
tidi permits us to minimize the number of transac-
tions in IN. This is important because IN must be
stored permanently.

We ensure that tidl is known after a crash by writ-
ing it to the log. We can advance tidl whenever that
transaction terminates, i.e., either commits or aborts.
When this happens we write to the log the new value
for tidl along with the commit or abort record that
we are writing anyway. Thus tidl is recorded without
extra log writes or forces. The log contains a series of
monotonically increasing tidi’s. The last tidi written
before a crash is the tidl used in representing IN.

While the system is executing normally, we know
which transaction is this oldest active undocumented
one. (Here, an active transaction means any transac-
tion known to the coordinator to have begun, whether
or not it has initiated the commit protocol.) The ter-
mination of this transaction permits tide to be ad-
vanced. Thus, we log transaction termination as fol-
lows:

Not oldest active transaction: If it is commit-
ting, we force a commit record for it and delete it
from the protocol database. If it is aborting, then
when all ACKs have been received, we delete it
from the database.

Oldest active undocumented transaction: If it
is committing, we write the new tidr to the log
along with the commit record. This might not be
the tici of the completing transaction; it may be
a higher tid if later transactions have also termi-
nated. If the transaction is aborting, then when
all ACKs are received we do an unforced write
of the new tit.& to the log.

If the coordinator fails before tidl is advanced past
the tid of a committed transaction, the log contains
the transaction’s commit record, which keeps it out of
IN. If the coordinator fails after tidl advances past
the committed transaction’s tid, then the transaction
is committed by presumption.

If the coordinator faila before tidl is advanced past
the tid of an aborted transaction, then the transac-
tion becomes part of IN and hence is remembered as

an aborted transaction. If the coordinator fails after
tidl is advanced past the tid of an aborted transac-
tion, ACKs from all cohorts must have been received.
Hence there will be no inquiries about this transac-
tion, so it doesn’t matter that an inquiry would be
told that the transaction committed.

An illuminating way to think about the protocol is
that after a crash the coordinator presumes abort for
tids greater than tidl and presumes commit for tids
less than tidl. Thus after a crash tidl is the boundary
between a presumed abort regime and a presumed
commit regime. During normal operation the regime
is presumed commit for all transactions. This means
that recovery must make an abort entry in the proto-
col database for each tid greater than tidl that doesn’t
have a commit record in the log.

4.2.3 Determining the Set COM rI REC

Because IN needs to be permanently recorded, it is
important that its representation be small. The quan-
tities tidh and tidl consume a trivial amount of stor-
age. The only question is how compactly we can rep-
resent COM n REC. All transactions that commit
have commit records stored on the log. So determin-
ing which transactions have committed can he done
simply by searching the log for commit records.

There are two standard ways to represent acts
which can be effective in representing COM n HEC,
depending on how big and how sparse the set is.

Consecutive tids: When tids are allocated con-
secutively, a compact representation for a set is
a bit vector. Our tidl becomes the origin for
the bit vector (BV). BV need only have a size
of bid,,, kid, where COM (1 REC .- {kid 1
BV[tid - lidr] = I} ‘I’h is is because there arc no
committed transactions with tids greater than
tid,t,.

Non-Consecutive tids: When tids are sparsely al-
located, a bit vector is not a compact representa-
tion. Sparse allocation might arise if timestamps
are used within tids. A common way of doing
this is to define a tid as < timestamp, nodeid >.
Such tids are both monotonic at a coordinator
and unique across the system. Here we represent
COM n REC as an explicit list of Lids, i.e. of
transactions with tids between lid, and tid,, that
have committed. If each tid is 16 bytes, and the
cardinality of COMn REC is around 50, and as-
suming that 2:l compression is possible on this
set of tids, then the amount, of information stored
for each crash is not more than 566 bytes.

4.3 Persistent, 1 N and its Use

No transactions in IN have committed. But we do
not know whether they were aborted or whether they
never ran. Aud if aborted, we do not know whether
they bc*gan the 2PC protocol or not. Hence, we do
not know whether we will receive inquiries about this
set or not. Nor do WC know how many inquiries we
might receive or which cohorts might make them. It
can thus be very difficult to garbage collect the infor-
mation concerning transactions in IN. One way to
deal with this is to permanently retain IN.

Permanently retaining transaction outcome was
originally proposed in 121. There all transaction out-
comes were retained permanently in one of the com-
mit protocols described. Our technique immediately
dispenses with the greater part of this information by
the prcsunlcd commit. strategy. For aborted transac-
tions, we normally garbage collect transaction out-
comes by requiring explicit ACK messages. Only
transactions that abort because of a system crash
cannot be garbage collected. Fortunately, the cardi-
nality of COM II RBC will typically be small. Also,
the stably recorded information will be linear in the
number of system crashes.

Given the representations for IN described above,
storing storing it forever is quite manageable. Even
assuming that the system crashes once a day (which
is high for a well managed system), and the system
is in operation seven days a week, it would take 2000
days or six years to accumulate one megabyte of crash
related IN information. The current purchase price
of a megabyte of disk space is two dollars.

SO that the transaction manager can respond
quickly to requests for transaction outcomes, informa-
t,ion from IN should be maintained in main memory.
While fiV may be too large to be stored entirely in
main memory, we can easily cache information about
t.he last several crashes. Almost all inquiries will be
for transactions involved in these crashes, and main-
taining this information in main memory has a trivia1
cost. This should easily suffice for efficient system op-
eration.

5 A New PrC Protocol

Ijuilding on the preceding ideas, we now describe a
new presumed commit protocol (NPrC) that does not
require a log force at protocol start. NPrC has a
rncssage protocol that is identical to the PrC proto-
col, and it manages its volatile protocol database in
much the same way. NPrC differs from PrC in what
its coordinator writes to the log, and hence in the in-
formation that the coordinator recovers after a crash.

We assume that a transaction manager coordinates
commit and has its own log [3]. We write the de-
scription for a flat transaction cohort structure; an
extension to the tree mode1 is discussed in section 6.

During normal operation, NPrC’s extra complexity
is minimal. It needs only to delimit persistently the
set of potentially initiated transactions. This it does
by occasionally doing an’ unforced write of a small
amount of extra information to the log so that tidl
and tidh can be recovered after a crash. This is much
less costly than the forced log writes required by PrC.
At recovery time, an NPrC coordinator needs to do
more work than a PrC coordinator because it knows
less. But crashes are rare, and the extra work at
recovery is not large in any event.

5.1 Coordinator Begins Protocol

The 2PC protocol begins when the coordinator re-
ceives a commit directive from some cohort of the
transaction or from the application. The coordina-
tor sends out PREPARE messages to cohorts ask-
ing them whether to commit the transaction. No log
record is forced, or even written. The coordinator
then waits to receive responses from all cohorts.

We distinguish the cases where a transaction is
aborted, where the transaction has done updating,
and where the transaction is read-only. In particular,
a transaction cohort sends an ABORT-VOTE mes-
sage if it wishes to abort the transaction, a COMMIT-
VOTE message if the cohort has updated, and a
READ-ONLY-VOTE message if the cohort has only
read data. This is just like PrN.

5.2 Aborting Transactions

If any of the cohorts sends an ABORT-VOTE, or
if the responses do not arrive in a timely fashion,
then the coordinator sends an ABORT outcome mes-
sage to cohorts that have not sent an ABORT-VOTE.
When all such cohorts have ACKed the ABORT mes-
sage, the coordinator deletes the transaction from its
protocol database. Now tidl can be advanced past its
tid.

Should the system fail before all ACKs for an
aborted transaction are received or after ACKs are
received but before tidr is advanced past its tid, the
transaction will be part of IN, and on a cohort in-
quiry the coordinator will respond that the transac-
tion has aborted. If the system fails after tidl is ad-
vanced past its tid, then the transaction is presumed
to have committed. However, that cannot happen un-
til after all ACKs are received, and hence no inquiries
will ever be made.

Thus for transaction abort there are four mes-
sages per update cohort that sent COMMIT-VOTES,
two from coordinator to cohort (PREPARE and
ABORT), and two from cohort to coordinator
(COMMIT-VOTE and ACK) and a log write only if
the aborting transaction was the oldest active trans-
action. This records the new value of tidl; it need
not be forced. Aborting cohorts send only the one
ABORT-VOTE message.

5.3 Committing Update Transactions

If all cohorts have voted, no cohort has sent an
ABORT-VOTE, and at least one cohort has sent a
COMMIT-VOTE, then this is an update transac-
tion. The coordinator forces a commit log record.
This record need not contain the names of cohorts,
and no END record is needed later since there are
no ACK messages expected. The transaction’s entry
is deleted from the protocol database and the trans-
action is presumed to have committed. When the
committing transaction is the oldest active transac-
tion, a new tidl record is forced to the log along with
the commit record.

Should the system fail before the commit record is
forced, the transaction is in IN and will be aborted.
If it fails after the commit record is forced, but before
tidl advances past its tid, its tid is part of REC, but
it is in COM and hence not in IN. If the system fails
after tidl is advanced past its tid, the transaction is
correctly presumed to have committed.

Thus for transaction commit the cost of this coor-
dinator activity is one log record forced (the commit
record with or without tidi) and three messages per
update cohort, PREPARE, COMMIT-VOTE, and
COMMIT. The ACK message is avoided.

5.4 Committing R-O Transactions

NPrC writes no log record until after the votes for all
cohorts have been received. If all cohorts send READ-
ONLY-VOTES, the transaction is a read-only trans-
action. All cohorts have terminated without writing
to their logs, and have “forgotten” ‘this transaction.
There is no need for the coordinator to write any log
record or to send any additional messages.

If the system crashes, the value of IN will imply
different outcomes, depending on how close to the
crash the read-only transaction finished. If the tid for
this transaction is greater than tidl, then it will be in
IN, and the transaction will appear to be aborted.
If less than tidl, then it will appear to be commit-
ted. However, no cohort will make an inquiry so the
apparent outcome is irrelevant.

The protocol cost in this case is no log records writ-
ten at the coordinator, one message (PREPARE) to
each cohort, and one message (READ-ONLY-VOTE:)
from each (read-only) cohort. A cohort need not write
a log record for the usual 2PC protocol.

5.5 Summary and Comparison

The message and log write costs for NPrC to commit
a transaction are tabulated in Table 1. Its costs are
never worse, and are usually better, than the costs
of either the standard PrN protocol or the two com-
mon optimired forms of 2PC, presumed abort (PrA)
and presumed commit (PrC). Note in particular that
to commit an update transaction, an NPrC coordi-
nator needs fewer log writes than either PrA or PrC,
and an NPrC cohort sends fewer messages than PrA.
Furthermore, to abort a transaction usually entails
no log write. Occasionally a tidl record might need
to be written, but it need not be forced.

The NPrC protocol does less logging than PrA
by focusing on the main memory protocol database.
In particular, it is only necessary to correctly iden-
tify commit or abort outcomes for those transac-
tions that are engaged in the protocol and whose
cohorts may ask for the outcomes. Presuming an

incorrect outcome for other transactions in no way
compromises correctness of the protocol. In addi--
tion, NPrC sacrifices the ability to recover informa-
tion used to garbage collect protocol database entries.

This means that some information about transaction
outcome may need to be retained forever. Bowever,
the amount of information preserved for each crash is
small. So long as the coordinator does not crash of-
ten, retaining this information is only a minor burden.
The reduction in coordinator logging is substantial.

A cohort need not know whether the coordinator is
executing PrC or NPrC, because the message proto-
col is the same. It .is only within the coordinator that,
behavior is different. We have traded the ongoing
logging necessary to permit us to always garbage col-
lect our protocol database entries after a coordinator
crash for the cost of storing forever a small amount
of information about each crash. This appears to be
a good trade.

6 Discussion

Here we discuss some additional issues related to our
NPrC commit protocol.

6.1 Hecalcitrant Transactions

‘l’here are a number of situations in which tidl may be
prevented from advancing or in which we may want
to violate its requirements.

l A transaction has been aborted because a cohort
has failed; it will be a long time before the failed
cohort ACKs the abort. Given our prior ap
preach, tidl cannot be advanced past this trans-
action’s tid.

l A transaction is very long-lived. While it is ac-
tive, it prevents tidl from being advanced past
its tid.

l In the tree of processes model of transactions [9],
a coordinator at one level of the transaction tree
can be a cohort at the next higher level. Such a
coordinator as cohort does not control the issuing
of lids. Hence, this coordinator may receive a tid
that is earlier than its current tidl.

There is a common solution for each of these re-
calcitrant transactions: write an explicit initiation
record for it to the log. Later this record will be
logically deleted by an (unforced) end record for an
aborted transaction or a (forced) commit record for a
committed transaction. We permit tidl to be greater
than the tids of these explicitly initiated transactions.
At recovery time, we restore to our protocol database
all transactions with initiation records on the log that
have not been terminated explicitly. This is the orig-
inal PrC protocol, but we use it only for recalcitrant
transactions.

It is important to note that transactions become
recalcitrant only when they prevent us from advanc-
ing tidl as we would like. That is, we do not need to
identify these transactions at transaction initiation.
When they cause us trouble with tidl, we write their
initiation log records and then log the advance of tidl.

We can frequently piggyback the transaction ini-
tiation record for these transactions on a commit or
abort already in progress. Advancing tidl can also be
done at this time. So long as the log record advancing
tidl is written after the transaction initiation record,
there are no additional log forces.

When a coordinator in the tree of processes trans-
action model receives a tid that is below its tidl it acts
like a PrC coordinator (see [S]). That is, it forces an
initiation record to its log before continuing with this
transaction, and in particular before forwarding this
tid to other cohorts.

The important point is that the vast majority of
transactions will not need initiation records and hence

will save the log writes. All our optimisations oc-
cur within the coordinator. Externally, the message
and cohort protocols are those usually associated with
PrC in any event. Hence one cannot externally distin-
guish the coordinator behavior used for logging any
given transaction.

6.2 Transaction Timestamping

In [5], timestamped voting was used both to optimire
2PC and to provide each committed transaction with
a timestamp that agrees with transaction serialisa-
tion. This guarantees serialieability even when trans-
action termination is not guaranteed, while permit-
ting the read-only and other optimisations. Given
the performance of the read-only optimisation, and
the fact that commercial commit protocols usually
do not require transaction termination, this is impor-
tant. There are two cases that we need to consider.

6.2.1 Timestamps for Versioned Data

To support transaction-time databases in which ver-
sions of data are timestamped with the commit time
of the transaction [6, 71, it is no longer sufficient to
know only that a transaction has committed. We
must know its commit timestamp as well. This means
that we cannot presume commit since we cannot pre-
sume the timestamps. Obviously, we want the coordi-
nator to garbage collect these entries once they are no
longer needed. Hence presumed abort (PrA), which
remembers the committed transactions, is better in
this case because it can simply keep the timestamps
with its committed transaction entries. No form of
presumed commit can be used.

6.2.2 Timestamps Only for Commit Protocol

So long as databases are using transaction times-
tamps not to timestamp data but solely as part of
the commit protocol [5], it is not necessary to re-
member the timestamp of a committed transaction.
The coordinator will have sent its COMMIT message
with a timestamp that is within the bounds set by the
timestamp ranges of all cohorts. If asked, the coordi-
nator responds that the transaction was committed,
and the cohort then knows that the commit time was
within the timestamp range of its COMMIT-VOTE
message.

The cohort uses the knowledge of whether the
transaction committed or aborted to permit it to in-
stall the appropriate state, before state in the case of
abort, after state in the case of commit. It can safely
release all locks, both read and write locks, at the

639

time denoted by the upper bound in its COMMIT-
VOTE timestamp range.

Because the coordinator need not remember a
committed transaction’s timestamp, the information
about transactions that have completed the commit
protocol is again binary: commit or abort. Presumed
commit protocols can be used in these instances, and
our NPrC protocol is not only applicable but desir-
able.

6.3 Garbage Collecting 18

If we knew all cohorts of the transactions active at
the time of a crash, we would not need to retain IN
forever. We could simply broadcast the news of the
crash, including IN, to all such cohorts, wait for them
to ACK this CRASH message, and then discard IN.
If another crash occurs during this process, we simply
repeat the message.

Knowing precisely which cohorts are involved in ac-
tive transactions at the time of a crash is, of course,
one of the reasons that PrC needs the extra forced
log write. However, just as we do not need precise
information about which transactions are active at
the time of a crash, we also do not need precise in-
formation about the cohorts of these transactions. In
both cases, a superset that bounds the siee of the ac-
tual set is sufficient. The wasted CRASH messages
sent to cohorts in the superset that are not actually
involved in active transactions are a modest cost be-
cause crashes don’t happen often. This can be an
asynchronous background activity that is performed
lasily.

Our problem thus reduces to knowing the superset
of potential cohorts af transactions active at the time
of a crash. This can be done by maintaining a cohort
database. Each time a cohort that we have not seen
before becomes involved in a transaction, we update
this database. This requires a log record to make
the update stable, and the affected part of the cohort
database should eventually be written to disk as well.
Such a cohort database should be small enough to
stay in main memory, and its update activity should
be very low. It might be initialized a priori with the
set of expected or permitted cohorts. If the sire of this
database becomes a problem, we could occasionally
delete entries that have not recently participated in
transactions.

Acknowledgments

Johannes Klein, Jim Gray, and Alan Fekete read the
technical report on which this paper is based and

made helpful comments, especially about garbage col-
lecting crash related information and about cohort.
failures.

References

[II

PI

PI

PI

PI

PI

[71

PI

[Ql

Gray, J. Notes on Database Systems. IBM He-
search Report RJ2188 (Feb.1978) San Jose, CA

Gray, J. Minimizing the Number of Messages in
Commit Protocols. Worhahop on Fundamental 1.v
dues in Distributed Computing, Pala Mesa, CA
(Feb. 1981), 90-92.

,

Gray, J. and Reuter, A. ‘Zkanaaction I’mcea.c-
ing: Concepts and Techniques, Morgan-Kaufman,
Redwood, CA, 2992

Lampson, B. and Sturgis, H. Crash Recovery in
a Distributed System. Xerox PARC Research Re-
port, 1976.

Lomet, D. Using Timestamps to Optimize Two
Phase Commit. proceedings of the PDZS Con,Jer-
ence, San Diego, CA (Jan 1993), 48-55.

J,omet, D. and Salaberg, B. Access Methods for
Multiversion Data. Proc. ACM SZGMOD ConJcr-
ence, Portland, OR (June 1989), 315424.

Lomet, D. and Salzberg, B. Transaction-tirnc
Databases. In Temporal Databases: Theory, UC-
sign, and Implementation (A. Tansel et al., cd-
itors), A. Benjamin Cummings, Redwood City,
CA (Jan 1993).

Mohan, C. and Lindsay, B. Efficient Commit Pro-
tocols for the Tree of Processes Model of Dis-
tributed Transactions. Proc. 2nd Symposium on
Principles of Distributed Computing, Montreal,
CA (Aug. 1983).

Mohan, C., Lindsay, B. and Otwrlnwk, I(.
Transaction Management in the It* IXslributecl
Database Management System. ACM ‘Ihnr.
Database Systems 11, 4 (Dec. 86), 378-396.

[lo] Samaras, G., Britton, K., Citron, A., and Mo-
han, C. Two-Phase Commit Optimirations and
Tradeoffs in the Commercial Environment. Proc.

Data Engineering Conference, Vienna, Auelria
(Feb. 1993).

