
Skew-Aware Automatic Database Partitioning in
Shared-Nothing, Parallel OLTP Systems

Andrew Pavlo Carlo Curino Stan Zdonik
Brown University Yahoo! Research Brown University

pavlo@cs.brown.edu krl@yahoo-inc.com sbz@cs.brown.edu

ABSTRACT
The advent of affordable, shared-nothing computing systems por-
tends a new class of parallel database management systems (DBMS)
for on-line transaction processing (OLTP) applications that scale
without sacrificing ACID guarantees [7, 9]. The performance of
these DBMSs is predicated on the existence of an optimal database
design that is tailored for the unique characteristics of OLTP work-
loads [43]. Deriving such designs for modern DBMSs is difficult,
especially for enterprise-class OLTP systems, since they impose
extra challenges: the use of stored procedures, the need for load
balancing in the presence of time-varying skew, complex schemas,
and deployments with larger number of partitions.

To this purpose, we present a novel approach to automatically
partitioning databases for enterprise-class OLTP systems that sig-
nificantly extends the state of the art by: (1) minimizing the number
distributed transactions, while concurrently mitigating the effects
of temporal skew in both the data distribution and accesses, (2) ex-
tending the design space to include replicated secondary indexes,
(4) organically handling stored procedure routing, and (3) scaling
of schema complexity, data size, and number of partitions. This
effort builds on two key technical contributions: an analytical cost
model that can be used to quickly estimate the relative coordination
cost and skew for a given workload and a candidate database de-
sign, and an informed exploration of the huge solution space based
on large neighborhood search. To evaluate our methods, we inte-
grated our database design tool with a high-performance parallel,
main memory DBMS and compared our methods against both pop-
ular heuristics and a state-of-the-art research prototype [17]. Using
a diverse set of benchmarks, we show that our approach improves
throughput by up to a factor of 16× over these other approaches.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

Keywords
OLTP, Parallel, Shared-Nothing, H-Store, KB, Stored Procedures

1. INTRODUCTION
The difficulty of scaling front-end applications is well known for

DBMSs executing highly concurrent workloads. One approach to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

this problem employed by many Web-based companies is to par-
tition the data and workload across a large number of commod-
ity, shared-nothing servers using a cost-effective, parallel DBMS.
Many of these companies have adopted various new DBMSs, col-
loquially referred to as NoSQL systems, that give up transactional
ACID guarantees in favor of availability and scalability [9]. This
approach is desirable if the consistency requirements of the data are
“soft” (e.g., status updates on a social networking site that do not
need to be immediately propagated throughout the application).

OLTP systems, especially enterprise OLTP systems that handle
high-profile data (e.g., financial and order processing systems), also
need to be scalable but cannot give up strong transactional and con-
sistency requirements [27]. The only option previously available
for these organizations was to purchase more powerful single-node
machines or develop custom middleware that distributes queries
over traditional DBMS nodes [41]. Both approaches are prohibitively
expensive and thus are not an option for many.

As an alternative to NoSQL and custom deployments, a new
class of parallel DBMSs, called NewSQL [7], is emerging. These
systems are designed to take advantage of the partitionability of
OLTP workloads to achieve scalability without sacrificing ACID
guarantees [9, 43]. The OLTP workloads targeted by these NewSQL
systems are characterized as having a large number of transactions
that (1) are short-lived (i.e., no user stalls), (2) touch a small sub-
set of data using index look-ups (i.e., no full table scans or large
distributed joins), and (3) are repetitive (i.e., typically executed as
pre-defined transaction templates or stored procedures [43, 42].)

The scalability of OLTP applications on many of these newer
DBMSs depends on the existence of an optimal database design.
Such a design defines how an application’s data and workload is
partitioned or replicated across nodes in a cluster, and how queries
and transactions are routed to nodes. This in turn determines the
number of transactions that access data stored on each node and
how skewed the load is across the cluster. Optimizing these two
factors is critical to scaling complex systems: our experimental ev-
idence shows that a growing fraction of distributed transactions and
load skew can degrade performance by over a factor 10× Hence,
without a proper design, a DBMS will perform no better than a
single-node system due to the overhead caused by blocking, inter-
node communication, and load balancing issues [25, 37].

Many of the existing techniques for automatic database parti-
tioning, however, are tailored for large-scale analytical applications
(i.e., data warehouses) [36, 40]. These approaches are based on
the notion of data declustering [28], where the goal is to spread
data across nodes to maximize intra-query parallelism [5, 10, 39,
49]. Much of this work is not applicable to OLTP systems be-
cause the multi-node coordination required to achieve transaction
consistency dominates the performance gains obtained by this type

61

...

Partition
Data

Partition
Data

Execution EngineExecution Engine

Txn Coordinator

Client
Application

Main
Memory

Core Core

Procedure Name
Input Parameters

Figure 1: An overview of the H-Store parallel OLTP DBMS.

of parallelism; previous work [17, 24] has shown that, even after
ignoring the affects of lock-contention, this overhead can be up to
50% of the total execution time of a transaction when compared to
single-node execution. Although other work has focused on paral-
lel OLTP database design [49, 17, 32], these approaches lack three
features that are crucial for enterprise OLTP databases: (1) sup-
port for stored procedures to increase execution locality, (2) the
use of replicated secondary indexes to reduce distributed transac-
tions, and (3) handling of time-varying skew in data accesses to
increase cluster load balance. These three salient aspects of en-
terprise databases hinder the applicability and effectiveness of the
previous work. This motivates our research effort.

Given the lack of an existing solution for our problem domain,
we present Horticulture, a scalable tool to automatically generate
database designs for stored procedure-based parallel OLTP sys-
tems. The two key contributions in this paper are (1) an automatic
database partitioning algorithm based on an adaptation of the large-
neighborhood search technique [21] and (2) a new analytical cost
model that estimates the coordination cost and load distribution for
a sample workload. Horticulture analyzes a database schema, the
structure of the application’s stored procedures, and a sample trans-
action workload, then automatically generates partitioning strate-
gies that minimizes distribution overhead while balancing access
skew. The run time of this process is independent of the database’s
size, and thus is not subject to the scalability limits of existing solu-
tions [49, 17]. Moreover, Horticulture’s designs are not limited to
horizontal partitioning and replication for tables, but also include
replicated secondary indexes and stored procedure routing.

Horticulture produces database designs that are usable with any
shared-nothing DBMS or middleware solution. To verify our work,
we integrated Horticulture with the H-Store [1] parallel DBMS.
Testing on a main memory DBMS like H-Store presents an excel-
lent challenge for Horticulture because they are especially sensitive
to the quality of partitioning in the database design, and require a
large number of partitions (multiple partitions for each node).

We thoroughly validated the quality of our design algorithms by
comparing Horticulture with four competing approaches, including
another state-of-the-art database design tool [17]. For our analysis,
we ran several experiments on five enterprise-class OLTP bench-
marks: TATP, TPC-C (standard and skewed), TPC-E, SEATS, and
AuctionMark. Our tests show that the three novel contributions
of our system (i.e., stored procedure routing, replicated secondary
indexes, and temporal-skew management) are much needed in the
context of enterprise OLTP systems. Furthermore, our results in-
dicate that our design choices provide an overall performance in-
crease of up to a factor 4× against the state-of-the-art tool [17] and
up to a factor 16× against a practical baseline approach.

The rest of the paper is organized as follows. In Section 2, we ex-
perimentally investigate the impact of distributed transactions and
temporal workload skew on throughput in a shared-nothing, paral-
lel OLTP system. Then in Section 3, we present an overview of
Horticulture and its capabilities. In Sections 4 and 5, we discuss

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 4 8 16 32 64

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of Partitions

All Single-Partitioned
10% Distributed
20% Distributed
30% Distributed

Figure 2: Impact of Distributed Transactions on Throughput

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 4 8 16 32 64

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

of Partitions

Uniform Workload
5% Skewed

10% Skewed
15% Skewed

Figure 3: Impact of Temporal Workload Skew on Throughput

the two key technical contributions of this paper: (1) our algorithm
to explore potential solutions and (2) our cost model. We discuss
various optimizations in Section 6 that allow our tool to scale to
large instances of the database design problem. Lastly, we present
our experimental evaluation in Section 7.

2. OLTP DATABASE DESIGN MOTIVATION
We now discuss the two key issues when generating a database

design for enterprise OLTP applications: distributed transactions
and temporal workload skew.

We first note that many OLTP applications utilize stored proce-
dures to reduce the number of round-trips per transaction between
the client and the DBMS [42]. Each procedure contains control
code (i.e., application logic) that invokes pre-defined parameter-
ized SQL commands. Clients initiate transactions by sending the
procedure name and input parameters to the cluster.

For each new transaction request, the DBMS determines which
node in the cluster should execute the procedure’s control code and
dispatch queries. In most systems, this node also manages a parti-
tion of data. We call this the base partition for a transaction [37].
Any transaction that needs to access data from only its base parti-
tion is known as a single-partition transaction [31]. These transac-
tions can be executed efficiently on a parallel DBMS, as they do not
require multi-node coordination [43]. Transactions that need to ac-
cess multiple partitions, known as distributed transactions, require
the DBMS to employ two-phase commit or a similar distributed
consensus protocol to ensure atomicity and serializability, which
adds additional network overhead [25].

Whether or a not a transaction is single-partitioned is based on
the physical layout of the database. That is, if tables are divided
amongst the nodes such that a transaction’s base partition has all of
the data that the transaction needs, then it is single-partitioned.

To illustrate how the presence of distributed transactions affects
performance, we executed a workload derived from the TPC-C
benchmark [45] on H-Store [1], a row-storage, relational OLTP
DBMS that runs on a cluster of shared-nothing, main memory-only
nodes [43, 26]. We postpone the details of our experimental setting
to Section 7. In each round of this experiment, we varied the num-
ber of distributed transactions and execute the workload on five dif-
ferent cluster sizes, with at most seven partitions assigned per node.

62

Fig. 2 shows that a workload mix of just 10% distributed transac-
tions has a significant impact on throughput. The graph shows that
the performance difference increases with larger cluster sizes: at 64
partitions, the impact is approximately 2×. This is because single-
partition transactions in H-Store execute to completion in a single
thread, and thus do not incur the overhead of traditional concur-
rency control schemes [24]. For the distributed transactions, the
DBMS’s throughput is limited by the rate at which nodes send and
receive the two-phase commit messages. These results also show
that the performance repercussions of distributed transactions in-
creases relative to the number of partitions because the system must
wait for messages from more nodes. Therefore, a design that min-
imizes both the number of distributed transactions and the number
of partitions accessed per transaction will reduce coordination over-
head, thereby increasing the DBMS’s throughput [49, 17].

Even if a given database design enables every transaction to ex-
ecute as single-partitioned, the DBMS may still fail to scale lin-
early if the application’s workload is unevenly distributed across
the nodes. Thus, one must also consider the amount of data and
transactions assigned to each partition when generating a new database
design, even if certain design choices that mitigate skew cause some
transactions to be no longer singled-partitioned. Existing tech-
niques have focused on static skew in the database [49, 17], but
failed to consider temporal skew [47]. Temporally skewed work-
loads might appear to be uniformly distributed when measured glob-
ally, but can have a significant effect on not only performance but
also availability in shared-nothing DBMSs [22].

As a practical example of temporal skew, consider Wikipedia’s
approach to partitioning its database by language (e.g., English,
German) [2]. This strategy minimizes the number of distributed
transactions since none of the common transactions access data
from multiple languages. This might appear to be a reasonable par-
titioning approach, however the database suffers from a non-trivial
amount of temporal skew due to the strong correlation between lan-
guages and geographical regions: the nodes storing the articles for
one language are mostly idle when it is night time in the part of
the world that speaks that language. If the data set for a particular
language is large, then it cannot be co-located with another par-
tition for articles that are mostly accessed by users from another
part of the world. At any point during the day the load across the
cluster is significantly unbalanced even though the average load of
the cluster for the entire day is uniform. Wikipedia’s current solu-
tion is to over-provision nodes enough to mitigate the skew effects,
but a temporal-skew-aware database design may achieve identical
performance with lower hardware and energy costs.

We also experimentally tested the impact of temporal skew on
our H-Store cluster. In this experiment, we use a 100% single-
partition transaction workload (to exclude distribution costs from
the results) and impose a time-varying skew. At fixed time inter-
vals, a higher percentage of the overall workload is directed to one
partition in the cluster. The results are shown in Fig. 3. For large
number of partitions, even when only an extra 5% of the overall
load is skewed towards a single-partition, the throughput is reduced
by a large factor, more than 3× in our test. This is because the ex-
ecution engine for the partition that is receiving a larger share of
the workload is saturated, which causes other partitions to remain
idle while the clients are blocked waiting for results. The latency
increases further over time since the target partition cannot keep up
with the increased load.

The above examples show that both distributed transactions and
temporal workload skew must be taken into account when deploy-
ing a parallel database in order to maximize its performance. Man-
ually devising optimal database designs for an arbitrary OLTP ap-

plication is non-trivial because of the complex trade-offs between
distribution and skew: one can enable all requests to execute as
single-partitioned transactions if the database is put on a single
node (assuming there is sufficient storage), but one can completely
remove skew if all requests are executed as distributed transactions
that access data at every partition. Hence, a tool is needed that
is capable of partitioning stored procedure-based enterprise OLTP
databases to balance these conflicting goals.

In the next section, we describe how we solve this problem.

3. AUTOMATIC DATABASE DESIGN
Horticulture is an automatic database design tool that selects the

best physical layout for a parallel DBMS that minimizes the num-
ber of distributed transactions while also reducing the effects of
temporal skew. The administrator provides Horticulture with (1)
the database schema of the target OLTP application, (2) a set of
stored procedures definitions, and (3) a reference workload trace.
A workload trace is a log of previously executed transactions for
an application. Each transaction record in the trace contains its
procedure input parameters, the timestamps of when it started and
finished, and the queries it executed with their corresponding input
parameters. Horticulture works under the reasonable assumption
that the sample trace is representative of the target application.

Using these inputs, Horticulture explores an application’s solu-
tion space, where for each table the tool selects whether to (1) hor-
izontally partition or (2) replicate on all partitions, as well as to
(3) replicate a secondary index for a subset of its columns. The
DBMS uses the column(s) selected in these design elements with
either hash or range partitioning to determine at run time which par-
tition stores a tuple. The tool also needs to determine how to enable
the DBMS to effectively route incoming transaction requests to the
partition that has most of the data that each transaction will need
to access [34]. As we will discuss in this section, this last step is
particularly challenging for applications that use stored procedures.

3.1 Design Options
Before discussing the specifics of our design algorithms, we first

elaborate on the design options supported by Horticulture. These
are based on the common assumption that OLTP transactions ac-
cess tables in a hierarchical manner [43]. These options are illus-
trated in Fig. 4 using components from TPC-C [45].

Horizontal Partitioning: A table can be horizontally divided
into multiple, disjoint fragments whose boundaries are based on the
values of one (or more) of the table’s columns (i.e., the partition-
ing attributes) [49]. The DBMS assigns each tuple to a particular
fragment based on the values of these attributes using either range
partitioning or hash partitioning. Related fragments from multiple
tables are combined together into a partition [23, 35]. Fig. 4a shows
how each record in the CUSTOMER table has one or more ORDER
records. If both tables are partitioned on their CUSTOMER id, then
all transactions that only access data for a single customer will ex-
ecute as single-partitioned, regardless of the state of the database.

Table Replication: Alternatively, a table can be replicated across
all partitions. This is different than replicating entire partitions for
durability and availability. Replication is useful for read-only or
read-mostly tables that are accessed together with other tables but
do not share foreign key ancestors. For example, the read-only
ITEM table in Fig. 4b does not have a foreign-key relationship with
the CUSTOMER table. By replicating this table, transactions do not
need to retrieve data from a remote partition in order to access it.
Any transaction that modifies a replicated table cannot be executed
as single-partitioned, since those changes must be broadcast to ev-

63

(a) Horizontal Partitioning (b) Table Replication (c) Secondary Index (d) Stored Procedure Routing
Figure 4: The Horticulture tool generates a database design that splits tables into horizontal partitions (Fig. 4a), replicates tables on all
partitions (Fig. 4b), replicates secondary indexes on all partitions (Fig. 4c), and routes transaction requests to the best base partition (Fig. 4d).

ery partition in the cluster. Furthermore, given that some OLTP
systems store the entire database in main memory, one must also
consider the space needed to replicate a table at each partition.

Secondary Indexes: When a query accesses a table through an
attribute that is not the partitioning attribute, it is broadcasted to all
nodes. In some cases, however, these queries can become single-
partitioned if the database includes a secondary index for a subset
of a table’s columns that is replicated across all partitions. Con-
sider a transaction for the database shown in Fig. 4c that executes
a query to retrieve the id of a CUSTOMER using their last name.
If each partition contains a secondary index with the id and the
last name columns, then the DBMS can automatically rewrite the
stored procedures’ query plans to take advantage of this data struc-
ture, thereby making more transactions single-partitioned. Just as
with replicated tables, this technique only improves performance if
the columns chosen in these indexes are not updated that often.

Stored Procedure Routing: In addition to partitioning or repli-
cating tables, Horticulture must also ensure that transaction requests
can be effectively routed to the partition that has the data that it will
need [38]. The DBMS uses a procedure’s routing attribute(s) de-
fined in a design at run time to redirect a new transaction request to
a node that will execute it [34]. The best routing attribute for each
procedure enables the DBMS to identify which node has the most
(if not all) of the data that each transaction needs, as this allows
them to potentially execute with reduced concurrency control [37].
The example in Fig. 4d illustrates how transactions are routed ac-
cording to the value of the input parameter that corresponds to the
partitioning attribute for the CUSTOMER table. If the transaction
executes on one node but the data it needs is elsewhere, then it must
execute with full concurrency control. This is difficult for many
applications, because it requires mapping the procedures’ input pa-
rameters to their queries’ input parameters using either a workload-
based approximation or static code analysis. Potential designs that
partition tables well are discarded if we are unable to generate a
good routing plan for procedures.

3.2 Database Design Challenges
The problem of finding an optimal database design is known to

be NP -Complete [31, 35], and thus it is not practical to examine
every possible design to discover the optimal solution [49]. Even
if one can prune a significant number of the sub-optimal designs
by discarding unimportant table columns, the problem is still ex-
ceedingly difficult when one also includes stored procedure rout-
ing parameters—as a reference, the number of possible solutions
for TPC-C and TPC-E are larger than 1066 and 1094, respectively.
Indeed, we initially developed an iterative greedy algorithm similar

to the one proposed in [4], but found that it obtained poor results
for these complex instances because it is unable to escape local
minima. There are, however, existing search techniques from opti-
mization research that make problems such as this more tractable.

Horticulture employs one such approach, called large-neighbor-
hood search (LNS), to explore potential designs off-line in a guided
manner [21, 18]. LNS compares potential solutions with a cost
model that estimates how well the DBMS will perform using a par-
ticular design for the sample workload trace without needing to
actually deploy the database. For this work, we use a cost model
that seeks to optimize throughput by minimizing the number of dis-
tributed transactions [23, 30, 17] and the amount of access skew
across servers [47]. Since the cost model is separate from the
search model, one could replace it to generate designs that accen-
tuate other aspects of the database (e.g., minimizing disk seeks,
improving crash resiliency). We discuss alternative cost models for
Horticulture for other DBMSs in Section 9.

We now present our LNS-based approach in the next section, and
then describe in Section 5 how Horticulture estimates the number
of distributed transactions and the amount of skew for each design.
Various optimization techniques, such as how to extract, analyze,
and compress information from a sample workload trace efficiently
and to speed up the search time, are discussed in Section 6.

4. LARGE-NEIGHBORHOOD SEARCH
LNS is well-suited for our problem domain because it explores

large solution spaces with a lower chance of getting caught in a
local minimum and has been shown to converge to near-optimal
solutions in a reasonable amount of time [21]. An outline of Horti-
culture’s design algorithm is as follows:
1. Analyze the sample workload trace to pre-compute informa-

tion used to guide the search process. (Section 6)
2. Generate an initial “best” designDbest based on the database’s

most frequently accessed columns. (Section 4.1).
3. Create a new incomplete design Drelax by “relaxing” (i.e., re-

setting) a subset of Dbest. (Section 4.2)
4. Perform a local search [49] for a new design usingDrelax as a

starting point. If any new design has a lower cost than Dbest,
then mark it as the newDbest. The search stops when a certain
number of designs fail to improve on Dbest or there are no
designs remaining in Drelax’s neighborhood. (Section 4.3)

5. If the total time spent thus far exceeds a limit, then halt the
algorithm and return Dbest. Otherwise, repeat Step 3 for a
new Drelax derived from Dbest.

When generating either the initial design in Step 1 or subsequent

64

Figure 5: An overview of Horticulture’s LNS design algorithm.
The algorithm generates a relaxed design from the initial design
and then uses local search to explore solutions. Each level of the
search tree contains the different candidate attributes for tables and
procedures for the target database. After the search finishes, the
process either restarts or emits the best solution found.

designs using local search in Step 4, Horticulture verifies whether a
design is feasible for the target cluster (i.e., the total size of the data
stored on each node is less than its storage limit) [18]. Non-feasible
designs are immediately discarded.

Next, we describe each of these steps in more detail.

4.1 Initial Design
The ideal initial design is one that is easy to compute and pro-

vides a good upper bound to the optimal solution. This allows LNS
to discard many potential designs at the beginning of the search be-
cause they do not improve on this initial design. To this purpose
our system builds compact summaries of the frequencies of access
and co-access of tables, called access graphs. We postpone the de-
tailed discussion of access graphs and how we derive them from a
workload trace to Section 6.1.

Horticulture uses these access graphs in a four-part heuristic to
generate an initial design:
1. Select the most frequently accessed column in the workload

as the horizontal partitioning attribute for each table.
2. Greedily replicate read-only tables if they fit within the parti-

tions’ storage space limit.
3. Select the next most frequently accessed, read-only column in

the workload as the secondary index attribute for each table if
they fit within the partitions’ storage space limit.

4. Select the routing parameter for stored procedures based on
how often the parameters are referenced in queries that use
the table partitioning columns selected in Step 1.

To identify which read-only tables in the database to replicate
in Step 2, we first sort them in decreasing order by each table’s
temperature (i.e., the size of the table divided by the number of
transactions that access the table) [16]. We examine each table one-
by-one according to this sort order and calculate the new storage
size of the partitions if that table was replicated. If this size is still
less than the amount of storage available for each partition, then we
mark the table as replicated. We repeat this process until either all
read-only tables are replicated or there is no more space.

We next select the secondary index column for any non-replicated
table as the one that is both read-only and accessed the most often in
queries’ predicates that do not also reference that table’s horizontal
partitioning column chosen in Step 1. If this column generates an
index that is too large, we examine the next most frequently access
column for the table.

Now with every table either replicated or partitioned in the initial
design, Horticulture generates parameter mappings [37] from the
workload trace that identify (1) the procedure input parameters that
are also used as query input parameters and (2) the input param-

eters for one query that are also used as the input parameters for
other queries. These mappings allow Horticulture to identify with-
out using static code analysis which queries are always executed
with the same input parameters using the actual values of the input
parameters in the workload. The technique described in [37] re-
moves spurious results for queries that reference the same columns
but with different values. We then select a routing attribute for each
stored procedure as the one that is mapped to the queries that are
executed the most often with predicates on the tables’ partitioning
columns. If no sufficient mapping exists for a procedure, then its
routing attribute is chosen at random.

4.2 Relaxation
Relaxation is the process of selecting random tables in the database

and resetting their chosen partitioning attributes in the current best
design. The partitioning option for a relaxed table is undefined in
the design, and thus the design is incomplete. We discuss how to
calculate cost estimates for incomplete designs in Section 5.3.

In essence, relaxation allows LNS to escape a local minimum
and to jump to a new neighborhood of potential solutions. This
is advantageous over other approaches, such as tableau search, be-
cause it is relatively easy to compute and does not require the algo-
rithm to maintain state between relaxation rounds [21]. To generate
a new relaxed design, Horticulture must decide (1) how many ta-
bles to relax, (2) which tables to relax, and (3) what design options
will be examined for each relaxed table in the local search.

As put forth in the original LNS papers [18, 21], the number of
relaxed variables (i.e., tables) is based on how much search time
remains as defined by the administrator. Initially, this size is 25%
of the total number of tables in the database; as time elapses, the
limit increases up to 50%1. Increasing the number of tables relaxed
over time in this manner is predicated on the idea that a tighter
upper bound will be found more quickly if the initial search rounds
use a smaller number of tables, thereby allowing larger portions of
the solution space to be discarded in later rounds [18, 21].

After computing the number of tables to reset, Horticulture then
randomly chooses which ones it will relax. If a table is chosen for
relaxation, then all of the routing parameters for any stored pro-
cedure that references that table are also relaxed. The probabil-
ity that a table will be relaxed in a given round is based on their
temperatures [16]: a table that is accessed frequently more likely
to be selected to help the search find a good upper bound more
quickly [21]. We also reduce these weights for small, read-only ta-
bles that are already replicated in the best design. These are usually
the “look-up” tables in OLTP applications [43], and thus we want
to avoid exploring neighborhoods where they are not replicated.

In the last step, Horticulture generates the candidate attributes
for the relaxed tables and procedures. For each table, its candidate
attributes are the unique combination of the different design op-
tions available for that table (Section 3.1). For example, one poten-
tial candidate for CUSTOMER table is to horizontally partition the
table on the customer’s name, while another candidate partitions
the table on the customer’s id and includes a replicated secondary
index on the customer id and name. Multiple candidate attributes
for a single table are grouped together as an indivisible “virtual”
attribute. The different options in one of these virtual attributes
are applied to a design all at once so that the estimated cost never
decreases during the local search process.

4.3 Local Search
Using the relaxed design Drelax produced in the previous step,

Horticulture executes a two-phase search algorithm to iteratively
1These values were empirically evaluated following standard practice guidelines [18].

65

explore solutions. This process is represented as a search tree,
where each level of the tree coincides with one of the relaxed database
elements. As shown in Fig. 5, the search tree’s levels are split into
two sections corresponding to the two search phases. In the first
phase, Horticulture explores the tables’ candidate attributes using
a branch-and-bound search [49, 32]. Once all of the relaxed tables
are assigned an attribute in Drelax, Horticulture then performs a
brute-force search in the second phase to select the stored proce-
dures’ routing parameters.

As Horticulture explores the table portion of the search tree, it
changes the current table’s design option in Drelax to each candi-
date attribute and then estimates the cost of executing the sample
workload using that new design. If this cost estimate is less than
the cost ofDbest and is feasible, then the search traverses down the
tree and examines the next table’s candidate attributes. But if this
cost is greater than or equal to the cost of Dbest or if the design is
not feasible, the search continues on to the next candidate attribute
for the current table. If there are no more attributes for this level,
then the search “backtracks” to the previous level.

Horticulture maintains counters for backtracks and the amount of
time spent in the current search round. Once either of these exceed
a dynamic limit, the local search halts and returns to the relaxation
step. The number of backtracks and search time allowed for each
round is based on the number of tables that were relaxed in Drelax.
As these limits increases over time, the search is given more time to
explore larger neighborhoods. We explore the sensitivity of these
parameters in our evaluation in Section 7.6.

In the second phase, Horticulture uses a different search tech-
nique for procedures because their design options are independent
from each other (i.e., the routing parameter for one procedure does
not affect whether other procedures are routed correctly). There-
fore, for each procedure, we calculate the estimated costs of its
candidate attributes one at a time and then choose the one with the
lowest cost before moving down to the next level in the search tree.
We examine the procedures in descending order of invocation fre-
quency so that the effects of a bad design are discovered earlier.

If Horticulture reaches the last level in the tree and has a design
that is both feasible and has a cost that is less than Dbest, then
the current design becomes the new best design. The local search
still continues but now all comparisons are conducted with the new
lower cost. Once either of the search limits is reached or when all
of the tree is explored, the process restarts using a new relaxation.

The entire process halts after after an administrator-defined time
limit or when Horticulture fails to find a better design after a cer-
tain period of time (Section 7.6). The final output is the best de-
sign found overall for the application’s database. The administrator
then configures the DBMS using the appropriate interface to deploy
their database according to this design.

5. SKEW-AWARE COST MODEL
Horticulture’s LNS algorithm relies on a cost model that can es-

timate the cost of executing the sample workload using a particular
design [16, 35, 49, 29]. Using an analytical cost model is an estab-
lished technique in automatic database design and optimization [13,
19], as it allows one to determine whether one design choice is bet-
ter than others and can guide the search process towards a solution
that accentuates the properties that are important in a database. But
it is imperative that these estimations are computed quickly, since
the LNS algorithm can generate thousands of designs during the
search process. The cost model must also be able to estimate the
cost of an incomplete design. Furthermore, as the search process
continues down the tree, the cost estimates must increase monoton-
ically as more variables are set in an incomplete design.

Algorithm 1 CoordinationCost(D,W)

txnCount← 0, dtxnCount← 0, partitionCount← 0
for all txn∈W do

P ← GetPartitions(D, txn)
if |P | > 1 then

dtxnCount← dtxnCount + 1
partitionCount← partitionCount + |P |

end if
txnCount← txnCount + 1

end for
return

(
partitionCount

(txnCount× numPartitions)
×
(
1.0 +

dtxnCount

txnCount

))

Given these requirements, our cost model is predicated on the
key observation that the execution overhead of a multi-partition
transaction is significantly more than a single-partition transaction [43,
24]. Some OLTP DBMSs execute a single-partition transaction se-
rially on a single node with reduced concurrency control, whereas
any distributed transactions must use an expensive concurrency con-
trol scheme to coordinate execution across two or more partitions [43,
25, 37]. Thus, we estimate the run time cost of a workload as being
proportional to the number of distributed transactions.

In addition to this, we also assume that (1) either the working
set for an OLTP application or its entire database is stored in main
memory and (2) that the run times for transactions are approxi-
mately the same. This means that unlike other existing cost mod-
els [16, 49, 13], we can ignore the amount of data accessed by each
transaction, and that all of a transaction’s operations contribute an
equal amount to the overall load of each partition. In our expe-
rience, transactions that deviate from these assumptions are likely
analytical operations that are either infrequent or better suited for a
data warehouse DBMS.

We developed an analytical cost model that not only measures
how much of a workload executes as single-partition transactions,
but also measures how uniformly load is distributed across the clus-
ter. The final cost estimation of a workload W for a design D is
shown below as the function cost(D,W), which is the weighted
sum of the normalized coordination cost and the skew factor:

cost(D,W) = (α×CoordinationCost(D,W))+(β×SkewFactor(D,W))
(α+β)

The parameters α and β can be configured by the administrator.
In our setting, we found via linear regression that the values five and
one respectively provided the best results. All experiments were
run with this parameterization.

This cost model is not intended to estimate actual run times, but
rather as a way to compare the quality of competing designs. It is
based on the same assumptions used in H-Store’s distributed query
planner. We show that the underlying principals of our cost model
are representative of actual run time performance in Section 7.3.

5.1 Coordination Cost
We define the function CoordinationCost(D,W) as the por-

tion of the cost model that calculates how well D minimizes the
number of multi-partition transactions in W; the cost increases
from zero as both the number of distributed transactions and the
total number of partitions accessed by those transactions increases.

As shown in Algorithm 1, theCoordinationCost function uses
the DBMS’s internal API functionGetPartitions to estimate what
partitions each transaction will access [12, 37]. This is the same
API that the DBMS uses at run time to determine where to route
query requests. For a given design D and a transaction txn, this
function deterministically returns the set of partitions P , where for
each p ∈ P the transaction txn either (1) executed at least one
query that accessed p or (2) executed its stored procedure control
code at the node managing p (i.e., its base partition). The partitions

66

Algorithm 2 SkewFactor(D,W)

skew ← [] , txnCounts← []
for i← 0 to numIntervals do

skew[i]← CalculateSkew(D,W, i)
txnCounts[i]← NumTransactions(W, i)

end for

return


numIntervals∑

i=0

skew[i]× txnCounts[i]∑
txnCounts


accessed by txn’s queries are calculated by examining the input
parameters that reference the tables’ partitioning columns in D (if
it is not replicated) in the pre-computed query plans.

There are three cases that GetPartitions must handle for de-
signs that include replicated tables and secondary indexes. First, if
a read-only query accesses only replicated tables or indexes, then
the query executes on the same partition as its transaction’s base
partition. Next, if a query joins replicated and non-replicated ta-
bles, then the replicated tables are ignored and the estimated parti-
tions are the ones needed by the query to access the non-replicated
tables. Lastly, if a query modifies a replicated table or secondary
index, then that query is broadcast to all of the partitions.

After counting the distributed transactions, the coordination cost
is calculated as the ratio of the total number of partitions accessed
(partitionCount) divided by the total number of partitions that
could have been accessed. We then scale this result based on the
ratio of distributed to single-partition transactions. This ensures, as
an example, that the cost of a design with two transactions that both
access three partitions is greater than a design where one transac-
tion is single-partitioned and the other accesses five partitions.

5.2 Skew Factor
Although by itself CoordinationCost is able to generate de-

signs that maximize the number of single-partition transactions, it
causes the design algorithm to prefer solutions that store the entire
database in as few partitions as possible. Thus, we must include an
additional factor in the cost model that strives to spread the execu-
tion workload uniformly across the cluster.

The function SkewFactor(D,W) shown in Algorithm 2 cal-
culates how well the design minimizes skew in the database. To
ensure that skew measurements are not masked by time, the Skew-
Factor function dividesW into finite intervals (numIntervals)
and calculates the final estimate as the arithmetic mean of the skew
factors weighted by the number of transactions executed in each
interval (to accommodate variable interval sizes). To illustrate why
these intervals are needed, consider a design for a two-partition
database that causes all of the transactions at time t1 to execute
only on the first partition while the second partition remains idle,
and then all of the transactions at time t2 execute only on the second
partition. If the skew is measured as a whole, then the load appears
balanced because each partition executed exactly half of the trans-
actions. The value of numIntervals is an administrator-defined
parameter. In our evaluation in Section 7, we use an interval size
that aligns with workload shifts to illustrate that our cost model de-
tects this skew. We leave it as future work to derive this parameter
using a pre-processing step that calculates non-uniform windows.

The function CalculateSkew(D,W, interval) shown in Al-
gorithm 3 generates the estimated skew factor of W on D for the
given interval. We first calculate how often partitions are accessed
and then determine how much over- or under-utilized each partition
is in comparison with the optimal distribution (best). To ensure that
idle partitions are penalized as much as overloaded partitions, we

Algorithm 3 CalculateSkew(D,W, interval)

partitionCounts← []
for all txn∈W , where txn.interval = interval do

for all p∈GetPartitions(D, txn) do
partitionCounts [p]← partitionCounts [p] + 1

end for
end for
total←

∑
partitionCounts

best← 1
numPartitions

skew ← 0
for i← 0 to numPartitions do

ratio← partitionCounts[i]
total

if ratio < best then
ratio← best +

((
1− ratio

best

)
× (1− best)

)
end if
skew ← skew + log

(
ratio
best

)
end for

return

(
skew

log
(

1
best

)
× numPartitions

)

(a) Random Skew = 0.34 (b) Gaussian Skew = 0.42 (c) Zipfian Skew = 0.74
Figure 6: Example CalculateSkew estimates for different distri-
butions on the number of times partitions are accessed.

invert any partition estimates that are less than best, and then scale
them such that the skew value of a ratio as it approaches zero is the
same as a ratio as it approaches one. The final normalized result
is the sum of all the skew values for each partition divided by the
total skew value for the cluster when all but one partition is idle.

Fig. 6 shows how the skew factor estimates increase as the amount
of skew in the partitions’ access distribution increases.

5.3 Incomplete Designs
Our cost model must also calculate estimates for designs where

not all of the tables and procedures have been assigned an attribute
yet [32]. This allows Horticulture to determine whether an incom-
plete design has a greater cost than the current best design, and thus
allows it to skip exploring the remainder of the search tree below
its current location. We designate any query that references a ta-
ble with an unset attribute in a design as being unknown (i.e., the
set of partitions accessed by that query cannot be estimated). To
compute the coordination cost of an incomplete design, we assume
that any unknown query is single-partitioned. We take the opposite
tack when calculating the skew factor of an incomplete design and
assume that all unknown queries execute on all partitions in the
cluster. As additional information is added to the design, queries
change to a knowable state if all of the tables referenced by the
query are assigned a partitioning attribute. Any unknown queries
that are single-partitioned for an incomplete designD may become
distributed as more variables are bound in a later design D′. But
any transaction that is distributed in D can never become single-
partitioned in D′, as this would violate the monotonically increas-
ing cost function requirement of LNS.

6. OPTIMIZATIONS
We now provide an overview of the optimizations that we de-

veloped to improve the search time of Horticulture’s LNS algo-
rithm. The key to reducing the complexity of finding the optimal
database design for an application is to minimize the number of
designs that are evaluated [49]. To do this, Horticulture needs to
determine which attributes are relevant to the application and are
thus good candidates for partitioning. For example, one would not
horizontally partition a table by a column that is not used in any
query. Horticulture must also discern which relevant attributes are

67

C

OLO

2

4

3

1 Edge# Columns Weight
(1) C.C_ID↔ C.C_ID 200
(2) C.C_ID↔ O.O_C_ID 100
(3) O.O_ID↔ OL.OL_O_ID 100
(4) O.O_ID↔ OL.OL_O_ID 100

O.O_C_ID↔ OL.OL_C_ID

Figure 7: An access graph derived from a workload trace.

accessed the most often and would therefore have the largest impact
on the DBMS’s performance. This allows Horticulture to explore
solutions using the more frequently accessed attributes first and po-
tentially move closer to the optimal solution more quickly.

We now describe how to derive such information about an appli-
cation from its sample workload and store them in a graph structure
used in Sections 4.1 and 4.3. We then present a novel compression
scheme for reducing the number of transactions that are examined
when computing cost model estimates in Section 5.

6.1 Access Graphs
Horticulture extracts the key properties of transactions from a

workload trace and stores them in undirected, weighted graphs,
called access graphs [3, 49]. These graphs allow the tool to quickly
identify important relationships between tables without repeatedly
reprocessing the trace. Each table in the schema is represented
by a vertex in the access graph and vertices are adjacent through
edges in the graph if the tables they represent are co-accessed. Ta-
bles are considered co-accessed if they are used together in one or
more queries in a transaction, such as in a join. For each pair of
co-accessed attributes, the graph contains an edge that is weighted
based on the number of times that the queries forming this relation-
ship are executed in the workload trace. A simplified example of
an access graph for the TPC-C benchmark is shown in Fig. 7.

We extend prior definitions of access graphs to accommodate
stored procedure-based DBMSs. In previous work, an access graph’s
structure is based on either queries’ join relationships [49] or ta-
bles’ join order in query plans [3]. These approaches are appro-
priate when examining a workload on a query-by-query basis, but
fail to capture relationships between multiple queries in the same
transaction, such as a logical join operation split into two or more
queries—we call this an implicit reference.

To discover these implicit references, Horticulture uses a work-
load’s parameter mappings [37] to determine whether a transaction
uses the same input parameters in multiple query invocations. Since
implicit reference edges are derived from multiple queries, their
weights are based on the minimum number of times those queries
are all executed in a single transaction [49].

6.2 Workload Compression
Using large sample workloads when evaluating a potential de-

sign improves the cost model’s ability to estimate the target database’s
properties. But the cost model’s computation time depends on the
sample workload’s size (i.e., the number of transactions) and com-
plexity (i.e., the number of queries per transaction). Existing design
tools employ random sampling to reduce workload size [17], but
this approach can produce poor designs if the sampling masks skew
or other potentially valuable information about the workload [11].
We instead use an alternative approach that compresses redundant
transactions and redundant queries without sacrificing accuracy.
Our scheme is more efficient than previous methods in that we only
consider what tables and partitions that queries access, rather than
the more expensive task of comparing sets of columns [11, 19].

Compressing a transactional workload is a two-step process. First,
we combine sets of similar queries in individual transactions into
fewer weighted records [19]. Such queries often occur in stored

procedures that contain loops in their control code. After combin-
ing queries, we then combine similar transactions into a smaller
number of weighted records in the same manner. The cost model
will scale its estimates using these weights without having to pro-
cess each of the records separately in the original workload.

To identify which queries in a single transaction are combinable,
we compute the input signature for each query from the values of
its input parameters and compare it with the signature of all other
queries. A query’s input signature is an unordered list of pairs of
tables and partition ids that the query would access if each table
is horizontally partitioned on a particular column. As an example,
consider the following query on the CUSTOMER (C) table:

SELECT * FROM C WHERE C_ID = 10 AND C_LAST = "Smith"

Assuming that the input value “10” corresponds to partition #10
if the table was partitioned on C_ID and the input value “Smith”
corresponds to partition #3 if it was partitioned on C_LAST, then
this query’s signature is {(C, 10) , (C, 3)}. We only use the param-
eters that are used with co-accessed columns when computing the
signature. For example, if only C_ID is referenced in the access
graph, then the above example’s input signature is {(C, 10)}.

Each transaction’s input signature includes the query signatures
computed in the previous step, as well as the signature for the trans-
action’s procedure input parameters. Any set of transactions with
the same query signatures and procedure input parameter signature
are combined into a single weighted record.

7. EXPERIMENTAL EVALUATION
To evaluate the effectiveness Horticulture’s design algorithms,

we integrated our tool with H-Store and ran several experiments
that compare our approach to alternative approaches. These other
algorithms include a state-of-the-art academic approach, as well as
other solutions commonly applied in practice:

HR+ Our large-neighborhood search algorithm from Section 4.
HR– Horticulture’s baseline iterative greedy algorithm, where de-

sign options are chosen one-by-one independently of others.
SCH The Schism [17] graph partitioning algorithm.
PKY A simple heuristic that horizontally partitions each table based

on their primary key.
MFA The initial design algorithm from Section 4.1 where options

are chosen based on how frequently attributes are accessed.

7.1 Benchmark Workloads
We now describe the workloads from H-Store’s built-in bench-

mark framework that we used in our evaluation. The size of each
database is approximately 1GB per partition.

TATP: This is an OLTP testing application that simulates a typi-
cal caller location system used by telecommunication providers [48].
It consists of four tables, three of which are foreign key descendants
of the root SUBSCRIBER table. Most of the stored procedures in
TATP have a SUBSCRIBER id as one of their input parameters, al-
lowing them to be routed directly to the correct node.

TPC-C: This is the current industry standard for evaluating the
performance of OLTP systems [45]. It consists of nine tables and
five stored procedures that simulate a warehouse-centric order pro-
cessing application. All of the procedures in TPC-C provide a
warehouse id as an input parameter for the transaction, which is
the foreign key ancestor for all tables except ITEM.

TPC-C (Skewed): Our benchmarking infrastructure also allows
us to tune the access skew for benchmarks. In particular, we gen-
erated a temporally skew load for TPC-C, where the WAREHOUSE

68

id used in the transactions’ input parameters is chosen so that at
each time interval all of the transactions target a single warehouse.
This workload is uniform when observed globally, but at any point
in time there is a significant amount of skew. This help us to stress-
test our system when dealing with temporal-skew, and to show the
potential impact of skew on the overall system throughput.

SEATS: This benchmark models an on-line airline ticketing sys-
tem where customers search for flights and make reservations [44].
It consists of eight tables and six stored procedures. The bench-
mark is designed to emulate a back-end system that processes re-
quests from multiple applications that each provides disparate in-
puts. Thus, many of its transactions must use secondary indexes or
joins to find the primary key of a customer’s reservation informa-
tion. For example, customers may access the system using either
their frequent flyer number or customer account number. The non-
uniform distribution of flights between airports also creates imbal-
ance if the database is partitioned by airport-derived columns.

AuctionMark: This is a 16-table benchmark based on an Inter-
net auction system [6]. Most of its 10 procedures involve an inter-
action between a buyer and a seller. The user-to-item ratio follows
a Zipfian distribution, which means that there are a small number
of users that are selling a large portion of the total items. The total
number of transactions that target each item is temporally skewed,
as items receive more activity (i.e., bids) as the auction approaches
its closing time. It is difficult to generate a design for Auction-
Mark that includes stored procedure routing because several of the
benchmark’s procedures include conditional branches that execute
different queries based on the transaction’s input parameters.

TPC-E: Lastly, the TPC-E benchmark is the successor of TPC-C
and is designed to reflect the workloads of modern OLTP applica-
tions [46]. Its workload features 12 stored procedures, 10 of which
are executed in the regular transactional mix while two are peri-
odically executed “clean-up” procedures. Unlike the other bench-
marks, many of TPC-E’s 33 tables have foreign key dependencies
with multiple tables, which create conflicting partitioning candi-
dates. Some of the procedures also have optional input parameters
that cause transactions to execute mutually exclusive sets of queries
based on which of these parameters are given at run time.

7.2 Design Algorithm Comparison
The first experiment that we present is an off-line comparison of

the database design algorithms listed above. We execute each al-
gorithm for all of the benchmarks to generate designs for clusters
ranging from four to 64 partitions. Each algorithm is given an input
workload trace of 25k transactions, and then is tested using a sepa-
rate trace of 25k transactions. We evaluate the effectiveness of the
designs of each algorithm by measuring the number of distributed
transactions and amount of skew in those designs over the test set.

Fig. 8a shows that HR+ produces designs with the lowest coor-
dination cost for every benchmark except TPC-C (Skewed), with
HR– and SCH designs only slightly higher. Because fewer par-
titions are accessed using HR+’s designs, the skew estimates in
Fig. 8b greater (this why the cost model uses the α and β parame-
ters). We ascribe the improvements of HR+ over HR– and MFA to
the LNS algorithm’s effective exploration of the search space using
our cost model and escaping local minima.

For TPC-C (Skewed), HR+ chooses a design that increases the
number of distributed transactions in exchange for a more balanced
load. Although the SCH algorithm does accommodate skew when
selecting a design, it currently does not support the temporal skew
used in this benchmark. The skew estimates for PKY and MFA are

lower than others in Fig. 8b because more of the transactions touch
all of the partitions, which causes the load to be more uniform.

7.3 Transaction Throughput
The next experiment is an end-to-end test of the quality of the

designs generated in the previous experiment. We compare the de-
signs from our best algorithm (HR+) against the state-of-the-art
academic approach (SCH) and the best baseline practical solution
(MFA). We execute select benchmarks in H-Store using the designs
for these algorithms and measure the system’s overall throughput.

We execute each benchmark using five different cluster sizes of
Amazon EC2 nodes allocated within a single region. Each node
has eight virtual cores and 70GB of RAM (m2.4xlarge). We
assign at most seven partitions per node, with the remaining parti-
tion reserved for the networking and administrative functionalities
of H-Store. The execution engine threads are given exclusive ac-
cess to a single core to improve cache locality.

Transaction requests are submitted from up to 5000 simulated
client terminals running on separate nodes in the same cluster. Each
client submits transactions to any node in the H-Store cluster in a
closed loop: after it submits a request, it blocks until the result is
returned. Using a large number of clients ensures that the execution
engines’ workload queues are never empty.

We execute each benchmark three times per cluster size and re-
port the average throughput of these trials. In each trial, the DBMS
“warms-up” for 60 seconds and then the throughput is measured
after five minutes. The final throughput is the number of transac-
tions completed in a trial run divided by the total time (excluding
the warm-up period). H-Store’s benchmark framework ensures that
each run has the proper distribution of executed procedures accord-
ing to the benchmark’s specification.

All new requests are executed in H-Store as single-partitioned
transactions with reduced concurrency control protection; if a trans-
action attempts to execute a multi-partition query, then it is aborted
and restarted with full concurrency control. Since SCH does not
support stored procedure routing, the system is unable to determine
where to execute each transaction request even if the algorithm gen-
erates the optimal partitioning scheme for tables. Thus, to obtain
a fair comparison of the two approaches, we implemented a tech-
nique from IBM DB2 [15] in H-Store to handle this scenario. Each
transaction request is routed to a random node by the client where it
will start executing. If the first query that the transaction dispatches
attempts to access data not stored at that node, then it is aborted
and re-started at the proper node. This ensures that single-partition
transactions execute with reduced concurrency control protection,
which is necessary for achieving good throughput in H-Store.

The throughput measurements in Fig. 9 show that the designs
generated by HR+ improve the throughput of H-Store by factors
1.3× to 4.3× over SCH and 1.1× to 16.3× over MFA. This vali-
dates two important hypotheses: (1) that our cost model and search
technique are capable of finding good designs, and (2) that by ex-
plicitly accounting for stored procedure routing, secondary indexes
replication, and temporal-skew management, we can significantly
improve over previous best-in-class solutions. Other notable obser-
vations are that (1) the results for AuctionMark highlight the impor-
tance of stored procedure routing, since this is the only difference
between SCH and HR+, (2) the TATP, SEATS, and TPC-C exper-
iments demonstrate the combined advantage of stored procedures
and replicated secondary indexes, and (3) that TPC-C (Skewed) il-
lustrates the importance of mitigating temporal-skew. We also note
that the performance of H-Store is less than expected for larger
cluster sizes due to clock skew issues when choosing transaction
identifiers that ensure global ordering [43].

69

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

TATP TPC−C TPC−C (SK) SEATS AuctionMark TPC−E

C
o
o
rd

in
a
ti

o
n
 C

o
st

HR+
HR−
SCH
PKY
MFA

(a) The estimated coordination cost for the benchmarks.

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

TATP TPC−C TPC−C (SK) SEATS AuctionMark TPC−E

S
k
e
w

 F
a
c
to

r

HR+
HR−
SCH
PKY
MFA

(b) The estimated skew of the transactions’ access patterns.
Figure 8: Offline measurements of the designs algorithms in Section 7.2.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(a) TATP

0

10,000

20,000

30,000

40,000

50,000

60,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(b) TPC-C

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(c) TPC-C (Skewed)

0

10,000

20,000

30,000

40,000

50,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(d) SEATS

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

of Partitions

 HR+
 SCH
 MFA

(e) AuctionMark (f) Design Components
Figure 9: Transaction throughput measurements for the HR+, SCH, and MFA design algorithms.

For this last item, we note that TPC-C (Skewed) is designed
to stress-test the designs algorithms under extreme temporal-skew
conditions to evaluate its impact on throughput; we do not claim
this to be a common scenario. In this setting, any system ignoring
temporal-skew will choose the same design used in Fig. 9b, result-
ing in near-zero scale-out. Fig. 9b shows that both SCH and MFA
do not improve performance as more nodes are added to the cluster.
On the contrary, HR+ chooses a different design (i.e., partitioning
by WAREHOUSE id and DISTRICT id), thus accepting many
more distributed transactions in order to reduce skew. Although all
the approaches are affected by skew resulting in an overall lower
throughput, HR+ is significantly better with more than 6× through-
put increase for the same 8× increase in nodes.

To further ascertain the impact of the individual design elements,
we executed TATP again using the HR+ design but alternatively
removing: (1) client-side stored procedure routing (falling back on
the redirection mechanism we built to test SCH), (2) the secondary
indexes replication, or (3) both. Fig. 9f shows the relative contri-
butions with stored procedure routing delivering 54.1% over the
baseline approach (that otherwise coincide with the one found by
SCH), secondary indexes contribute 69.6%, and combined they de-
liver a 3.5× improvement. This is because there is less contention
for locking partitions in the DBMS’s transaction coordinators [25].

7.4 Cost Model Validation
Horticulture’s cost model is not meant to provide exact through-

put predictions, but rather to quickly estimate the relative ordering
of multiple designs. To validate that these estimates are correct, we
tested its accuracy for each benchmark and number of partitions by
comparing the results from Fig. 8 and Fig. 9. We note that our cost
model predicts which design is going to perform best in 95% of the
experiments. In the cases where the cost model fails to predict the
optimal design, our analysis indicates that they are inconsequential
because they are from workloads where the throughput results are
almost identical (e.g., TATP on four partitions). We suspect that the
throughput differences might be due to transitory EC2 load condi-
tions rather than actual difference in the designs. Furthermore, the

small absolute difference indicates that such errors will not signifi-
cantly degrade performance.

7.5 Compression & Scalability
We next measured the workload compression rate for the scheme

described Section 6.2 using the benchmark’s sample workloads when
the number of partitions increases exponentially. The results in
Fig. 10 show that the compression rate decreases for all of the
benchmarks as the number of partitions increases due to the de-
creased likelihood of duplicate parameter signatures. The workload
for the TPC-C benchmark does not compress well due to greater
variability in the procedure input parameter values.

We also analyzed Horticulture’s ability to generate designs for
large cluster sizes. The results in Fig. 11 shows that the search time
for our tool remains linear as the size of the database increases.

7.6 Search Parameter Sensitivity Analysis
As discussed in Section 4.3, there are parameters that control

the run time behavior of Horticulture: each local search round ex-
ecutes until either it (1) exhausts its time limit or (2) reaches its
backtrack limit. Although Horticulture dynamically adjusts these
parameters [21], their initial values can affect the quality of the
designs found. For example, if the time limit is too small, then
Horticulture will fail to fully explore each neighborhood. More-
over, if it is too large, then too much time will be spent exploring
neighborhoods that never yield a better design. The LNS algorithm
will continue looking for a better design until either it (1) surpasses
the total amount of time allocated by the administrator or (2) has
exhausted the search space. In this experiment, we investigate what
are good default values for these search parameters.

We first experimented with using different local search and back-
track limits for the TPC-E benchmark. We chose TPC-E because it
has the most complex schema and workload. We executed the LNS
algorithm for two hours using different local search time limits with
an infinite backtrack limit. We then repeated this experiment using
an infinite local search time limit but varying the backtrack limit.
The results in Fig. 12 show that using the initial limits of approxi-

70

 0%

 20%

 40%

 60%

 80%

 100%

TATP TPC−C SEATS AuctionMark TPC−E

R
e
d

u
c
e
d

 S
iz

e
10 partitions
100 partitions
1000 partitions
10000 partitions

Figure 10: Workload Compression Rates

 0

 50

 100

 150

 200

 250

 300

 350

TATP TPC−C SEATS AuctionMark TPC−E

M
in

u
te

s

10 partitions
100 partitions
1000 partitions
10000 partitions

Figure 11: LNS search time for different cluster sizes

mately five minutes and 100–120 backtracks produces designs with
lower costs more quickly.

Non-deterministic algorithms, such as LNS, are not guaranteed
to discover the optimal solution, which means that there is no way
for the administrator to know how much time to let Horticulture to
continue searching. Thus, we need a way to know when to stop
searching for a better design. A naïve approach is to halt when the
algorithm fails to find a new solution after a certain amount of time.
But this is difficult to estimate for arbitrary inputs, since the search
time is dependent on a number of factors.

Another approach is to calculate a lower bound using a theoreti-
cal design [32] and then halt the LNS algorithm when it finds a de-
sign with a cost that is within a certain distance to that bound [21].
We compute this bound by estimating the cost of the workload us-
ing a design where all transactions execute as single-partitioned and
with no skew in the cluster (i.e., round-robin assignment). Note
that such a design is likely infeasible, since partitioning a database
to make every transaction single-partitioned cannot always be done
without making other transactions distributed. The graphs in Fig. 13
show the amount of time it takes for the LNS algorithm to find solu-
tions that converge towards the lower bound. We show the quality
of the design in terms of single-partition transactions as time pro-
ceeds. The red dotted line in each graph represents the best known
design we are aware of for each benchmark—we do not have ref-
erence designs for TPC-C (Skewed) and TPC-E, other than the one
found by our tools. The cost improvements shown in the graphs
plateau after a certain point, which is the desired outcome.

Overall, these experiments show that to achieve great perfor-
mance for OLTP workloads, especially on modern NewSQL sys-
tems, it is paramount that a design tool supports stored procedures,
replicated secondary indexes, and temporal skew. To the best of our
knowledge, Horticulture is the first to consider all of these issues.

8. RELATED WORK
There is an extensive corpus on the problem of automatic database

partitioning, including both theoretical [10] and applied research [20].
Most notable are the advancements from two commercial database
vendors: Microsoft’s SQL Server AutoAdmin [12, 11, 3, 5, 32] and
IBM’s DB2 Database Advisor [39, 50]. We limit this discussion to
the prior work that is relevant for parallel DBMSs.

The major differences amongst previous approaches are in (1)
selecting the candidate partitioning attributes and (2) the search
process used to find the optimal partitioning scheme. The former
examines a sample workload and represents the usefulness of the
candidate attributes extracted from the queries in auxiliary struc-

0%

50%

100%

 0 10 20 30 40 50 60 70

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes per Round

(a) Local Search Times

0%

50%

100%

 0 200 400 600 800 1000 1200

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Back Tracks per Round

(b) Backtrack Limits
Figure 12: A comparison of LNS-generated designs for TPC-E
using different (a) local search times and (b) backtrack limits.

0%

50%

100%

 0 1 2 3 4 5

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(a) TATP

0%

50%

100%

 0 2 4 6 8 10

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(b) TPC-C

0%

50%

100%

 0 24 48 72 96 120

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(c) TPC-C (Skewed)

0%

50%

100%

 0 20 40 60 80 100

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(d) SEATS

0%

50%

100%

 0 10 20 30 40 50

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(e) AuctionMark

0%

50%

100%

 0 24 48 72 96 120

S
in

g
le

-P
ar

ti
ti

o
n

T
ra

n
sa

ct
io

n
s

Minutes Elapsed

(f) TPC-E
Figure 13: The best solution found by Horticulture over time. The
red dotted lines represent known optimal designs (when available).

tures [10, 49, 49, 3, 39]. Microsoft’s AutoAdmin finds sets of can-
didate attributes for individual queries and then attempts to merge
them based on the entire workload [5]. The AutoPart tool identifies
conflicting access patterns on tables and creates read-only vertical
partitions from disjoint column subsets that are similar to our sec-
ondary indexes [36]. Further heuristics can then be applied to prune
this candidate set or combine attributes into multi-attribute sets [5].
One can then use these attributes with a partitioning algorithm that
uses heuristics [49], exhaustive search [39], or approximation [17].
The study done in [49] compares the performance versus quality
trade-offs of different search strategies.

Schism is another automatic partitioning tool that also seeks to
minimize distributed transactions [17]. For a given database, Schism
populates a graph containing a separate vertex for every tuple and
creates an edge between two vertices if the tuples that they repre-
sent are co-accessed together in a transaction in a sample workload.
It then applies a graph partitioning algorithm to produce balanced
boundaries that minimize the number of cross partition edges.

The work in [32] employs a branch-and-bound algorithm sim-
ilar to our approach to search for table partitioning and replica-
tion choices for shared-nothing, disk-based DBMSs, but without
the benefit of multiple search rounds in LNS. The lack of support
for stored procedures, replicated secondary indexes, and temporal
skew handling limit the effectiveness of [17, 32] for the enterprise
OLTP applications that we consider.

For stored procedure routing on shared-nothing DBMSs, the au-
thors in [38, 34] provide a thorough discussion of the static, de-
centralized scheme supported by Horticulture. The affinity-based
routing approach in [38] directs requests to the nodes with data
that the transactions will need using a broad categorization. The
approaches in [33, 37] automatically generate a more fine-grained
classification based on the previously executed transactions.

Much of the literature on cost estimation for main memory DBMSs
is for single-node systems [14] or do not consider workload skew [29].
The method in [8] generates non-uniform partition sizes to accom-
modate the start-up delay in multi-node full-table sequential scan
queries in main memory systems.

71

9. FUTURE WORK
We are extending Horticulture to generate database designs for

different types of systems. For example, we are working adapting
our tool for document-oriented NoSQL DBMSs to select the opti-
mal sharding and index keys, as well to denormalize schemas. This
work shows that Horticulture’s LNS-based approach is adaptable to
many different systems just by changing the cost model. We mod-
ified our cost model for NoSQL systems to estimate the number of
disk operations per operation [49] and the overall skew using the
same technique presented in Section 5.2. Because these systems do
not support joins or distributed transactions, we do not need to use
our coordination cost estimation.

Supporting database partitioning for a mixed OLTP and analyt-
ical workloads in Horticulture is another interesting research area.
A new cost model would have to accommodate multiple objectives,
such as improving intra-query parallelism in analytical queries while
also satisfying service-level agreements for the front-end workload.

We are also developing data placement algorithms that assign the
location and sizes of partitions to particular nodes in a cluster [35].
Generating an optimal placement strategy can improve the perfor-
mance of a distributed transaction by increasing the likelihood that
any “non-local” partition is located on the same node.

10. CONCLUSION
We presented a new approach for automatically partitioning a

database in a shared-nothing, parallel DBMS. Our algorithm uses
a large-neighborhood search technique together with an analyti-
cal cost model to minimize the number of distributed transactions
while controlling the amount of skew. To the best of our knowl-
edge, the system that we present is the first to target enterprise
OLTP systems by supporting stored procedure routing, replicated
secondary indexes, and temporal-skew handling. We experimen-
tally prove that these options are important in parallel OLTP sys-
tems, and that our approach generates database designs that enable
improve performance by up to 16× over other solutions.

11. REFERENCES
[1] H-Store: Next Generation OLTP DBMS Research.

http://hstore.cs.brown.edu.
[2] Wikipedia MySQL Server Roles.

https://wikitech.wikimedia.org/view/Server_roles.
[3] S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya. Automating layout of

relational databases. In ICDE, pages 607–618, 2003.
[4] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of

materialized views and indexes in SQL databases. In VLDB, 2000.
[5] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal

partitioning into automated physical database design. In SIGMOD, 2004.
[6] V. Angkanawaraphan and A. Pavlo. AuctionMark: A benchmark for

high-performance oltp systems.
[7] M. Aslett. How will the database incumbents respond to NoSQL and NewSQL?

The 451 Group, April 2011.
[8] N. Bassiliades and I. P. Vlahavas. A non-uniform data fragmentation strategy

for parallel main-memory database systems. In VLDB, pages 370–381, 1995.
[9] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39:12–27.

[10] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database
schemas. IEEE Trans. Softw. Eng., 9(4):487–504, 1983.

[11] S. Chaudhuri, A. K. Gupta, and V. Narasayya. Compressing SQL workloads. In
SIGMOD, pages 488–499, 2002.

[12] S. Chaudhuri and V. Narasayya. Autoadmin “what-if” index analysis utility.
SIGMOD Rec., 27(2):367–378, 1998.

[13] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool
for microsoft SQL server. In VLDB, pages 146–155, 1997.

[14] Y. C. Cheng, L. Gruenwald, G. Ingels, and M. T. Thakkar. Evaluating
partitioning techniques for main memory database: Horizontal and single
vertical. In ICCI, pages 570–574, 1993.

[15] J. Coleman and R. Grosman. Unlimited Scale-up of DB2 Using Server-assisted
Client Redirect. http://ibm.co/fLR2cH, October 2005.

[16] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data placement in
bubba. SIGMOD, 17(3):99–108, 1988.

[17] C. Curino, Y. Zhang, E. Jones, and S. Madden. Schism: a workload-drive
approach to database replication and partitioning. In VLDB, 2010.

[18] E. Danna and L. Perron. Structured vs. unstructured large neighborhood search:
A case study on job-shop scheduling problems with earliness and tardiness
costs. In Principles and Practice of Constraint Programming, volume 2833,
pages 817–821, 2003.

[19] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters
with iTuned. VLDB, 2:1246–1257, August 2009.

[20] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for
relational databases. ACM Trans. Database Syst., 13(1):91–128, 1988.

[21] F. Focacci, F. Laburthe, and A. Lodi. Handbook of Metaheuristics, chapter
Local Search and Constraint Programming. Springer, 2003.

[22] N. Folkman. So, that was a bummer. http://blog.foursquare.com/
2010/10/05/so-that-was-a-bummer/, October 2010.

[23] S. Ghandeharizadeh, D. J. DeWitt, and W. Qureshi. A performance analysis of
alternative multi-attribute declustering strategies. SIGMOD, 21(2):29–38, 1992.

[24] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through
the looking glass, and what we found there. In SIGMOD, pages 981–992, 2008.

[25] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for
partitioned main memory databases. In SIGMOD, pages 603–614, 2010.

[26] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi.
H-Store: A High-Performance, Distributed Main Memory Transaction
Processing System. Proc. VLDB Endow., 1(2):1496–1499, 2008.

[27] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner,
P. Dubey, and A. Zeier. Fast updates on Read-Optimized databases using
Multi-Core CPUs. VLDB, 5:61–72, September 2011.

[28] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management algorithms.
SIGMETRICS Perform. Eval. Rev., 15(1):69–77, 1987.

[29] S. Manegold, P. Boncz, and M. L. Kersten. Generic database cost models for
hierarchical memory systems. In VLDB, pages 191–202, 2002.

[30] M. Mehta and D. J. DeWitt. Data placement in shared-nothing parallel database
systems. The VLDB Journal, 6(1):53–72, 1997.

[31] R. Mukkamala, S. C. Bruell, and R. K. Shultz. Design of partially replicated
distributed database systems: an integrated methodology. SIGMETRICS
Perform. Eval. Rev., 16(1):187–196, 1988.

[32] R. Nehme and N. Bruno. Automated partitioning design in parallel database
systems. In SIGMOD, SIGMOD, pages 1137–1148, 2011.

[33] C. Nikolaou, A. Labrinidis, V. Bohn, D. Ferguson, M. Artavanis, C. Kloukinas,
and M. Marazakis. The impact of workload clustering on transaction routing.
Technical report, FORTH-ICS TR-238, 1998.

[34] C. N. Nikolaou, M. Marazakis, and G. Georgiannakis. Transaction routing for
distributed OLTP systems: survey and recent results. Inf. Sci., 97:45–82, 1997.

[35] S. Padmanabhan. Data placement in shared-nothing parallel database systems.
PhD thesis, University of Michigan, 1992.

[36] S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for
large scientific databases using data partitioning. In SSDBM, 2004.

[37] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing
transaction execution in parallel OLTP systems. VLDB, 5:85–96, October 2011.

[38] E. Rahm. A framework for workload allocation in distributed transaction
processing systems. J. Syst. Softw., 18:171–190, May 1992.

[39] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database
design in a parallel database. In SIGMOD, pages 558–569, 2002.

[40] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and load
balancing in parallel disk systems. The VLDB Journal, 7(1):48–66, 1998.

[41] J. Sobel. Scaling Out (Facebook). http://on.fb.me/p7i7eK, April 2006.
[42] M. Stonebraker and R. Cattell. 10 rules for scalable performance in ’simple

operation’ datastores. Commun. ACM, 54:72–80, June 2011.
[43] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland. The end of an architectural era: (it’s time for a complete rewrite). In
VLDB, pages 1150–1160, 2007.

[44] M. Stonebraker and A. Pavlo. The SEATS Airline Ticketing Systems
Benchmark. http://hstore.cs.brown.edu/projects/seats.

[45] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0).
http://www.tpc.org/tpcc/, June 2007.

[46] The Transaction Processing Council. TPC-E Benchmark (Revision 1.23.0).
http://www.tpc.org/tpce/, June 2010.

[47] C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and performance
model of data skew effects in parallel joins. In VLDB, pages 537–548, 1991.

[48] A. Wolski. TATP Benchmark Description (Version 1.0).
http://tatpbenchmark.sourceforge.net, March 2009.

[49] D. C. Zilio. Physical Database Design Decision Algorithms and Concurrent
Reorganization for Parallel Database Systems. PhD thesis, University of
Toronto, 1998.

[50] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano,
and S. Fadden. DB2 design advisor: integrated automatic physical database
design. In VLDB, pages 1087–1097, 2004.

72

http://hstore.cs.brown.edu
https://wikitech.wikimedia.org/view/Server_roles
http://ibm.co/fLR2cH
http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/
http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/
http://on.fb.me/p7i7eK
http://hstore.cs.brown.edu/projects/seats
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://tatpbenchmark.sourceforge.net

	Introduction
	OLTP Database Design Motivation
	Automatic Database Design
	Design Options
	Database Design Challenges

	Large-Neighborhood Search
	Initial Design
	Relaxation
	Local Search

	Skew-Aware Cost Model
	Coordination Cost
	Skew Factor
	Incomplete Designs

	Optimizations
	Access Graphs
	Workload Compression

	Experimental Evaluation
	Benchmark Workloads
	Design Algorithm Comparison
	Transaction Throughput
	Cost Model Validation
	Compression & Scalability
	Search Parameter Sensitivity Analysis

	Related Work
	Future Work
	Conclusion
	References

